3D Object Detection and Pose Estimation of Unseen Objects in Color
Images with Local Surface Embeddings
- URL: http://arxiv.org/abs/2010.04075v1
- Date: Thu, 8 Oct 2020 15:57:06 GMT
- Title: 3D Object Detection and Pose Estimation of Unseen Objects in Color
Images with Local Surface Embeddings
- Authors: Giorgia Pitteri, Aur\'elie Bugeau, Slobodan Ilic, Vincent Lepetit
- Abstract summary: We present an approach for detecting and estimating the 3D poses of objects in images that requires only an untextured CAD model.
Our approach combines Deep Learning and 3D geometry: It relies on an embedding of local 3D geometry to match the CAD models to the input images.
We show that we can use Mask-RCNN in a class-agnostic way to detect the new objects without retraining and thus drastically limit the number of possible correspondences.
- Score: 35.769234123059086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for detecting and estimating the 3D poses of objects
in images that requires only an untextured CAD model and no training phase for
new objects. Our approach combines Deep Learning and 3D geometry: It relies on
an embedding of local 3D geometry to match the CAD models to the input images.
For points at the surface of objects, this embedding can be computed directly
from the CAD model; for image locations, we learn to predict it from the image
itself. This establishes correspondences between 3D points on the CAD model and
2D locations of the input images. However, many of these correspondences are
ambiguous as many points may have similar local geometries. We show that we can
use Mask-RCNN in a class-agnostic way to detect the new objects without
retraining and thus drastically limit the number of possible correspondences.
We can then robustly estimate a 3D pose from these discriminative
correspondences using a RANSAC- like algorithm. We demonstrate the performance
of this approach on the T-LESS dataset, by using a small number of objects to
learn the embedding and testing it on the other objects. Our experiments show
that our method is on par or better than previous methods.
Related papers
- 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
arXiv Detail & Related papers (2022-07-30T01:48:23Z) - End-to-End Learning of Multi-category 3D Pose and Shape Estimation [128.881857704338]
We propose an end-to-end method that simultaneously detects 2D keypoints from an image and lifts them to 3D.
The proposed method learns both 2D detection and 3D lifting only from 2D keypoints annotations.
In addition to being end-to-end in image to 3D learning, our method also handles objects from multiple categories using a single neural network.
arXiv Detail & Related papers (2021-12-19T17:10:40Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
We propose a trainable framework for learning a deformable 3D geometry model from inhomogeneous image collections.
We in addition obtain the underlying 3D geometry of the objects depicted in the 2D images.
arXiv Detail & Related papers (2021-03-31T17:25:36Z) - 3D Object Recognition By Corresponding and Quantizing Neural 3D Scene
Representations [29.61554189447989]
We propose a system that learns to detect objects and infer their 3D poses in RGB-D images.
Many existing systems can identify objects and infer 3D poses, but they heavily rely on human labels and 3D annotations.
arXiv Detail & Related papers (2020-10-30T13:56:09Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
We propose to leverage existing large-scale datasets of 3D models to understand the underlying 3D structure of objects seen in an image.
We present Mask2CAD, which jointly detects objects in real-world images and for each detected object, optimize for the most similar CAD model and its pose.
This produces a clean, lightweight representation of the objects in an image.
arXiv Detail & Related papers (2020-07-26T00:08:37Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.