論文の概要: Classifying Songs with EEG
- arxiv url: http://arxiv.org/abs/2010.04087v1
- Date: Thu, 1 Oct 2020 14:02:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:59:04.447789
- Title: Classifying Songs with EEG
- Title(参考訳): 脳波による歌の分類
- Authors: Prashant Lawhatre, Bharatesh R Shiraguppi, Esha Sharma, Krishna Prasad
Miyapuram, Derek Lomas
- Abstract要約: 脳波応答の共鳴が個々の審美的快楽とどのように相関するかを検討する。
共振としての音楽処理の概念に触発されて、麻酔経験の強さは、参加者の脳波が知覚入力に学習する程度に基づいていると仮定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research study aims to use machine learning methods to characterize the
EEG response to music. Specifically, we investigate how resonance in the EEG
response correlates with individual aesthetic enjoyment. Inspired by the notion
of musical processing as resonance, we hypothesize that the intensity of an
aesthetic experience is based on the degree to which a participants EEG
entrains to the perceptual input. To test this and other hypotheses, we have
built an EEG dataset from 20 subjects listening to 12 two minute-long songs in
random order. After preprocessing and feature construction, we used this
dataset to train and test multiple machine learning models.
- Abstract(参考訳): 本研究では,音楽に対する脳波応答を特徴付けるための機械学習手法を提案する。
具体的には,脳波応答の共鳴が個々の審美的快楽とどのように相関するかを検討する。
音楽処理を共鳴という概念に触発されて、審美経験の強さは、被験者の脳波が知覚的入力にどのように訓練するかに基づいていると仮定する。
これや他の仮説をテストするために、20人の被験者から12分間の曲をランダムに聴くEEGデータセットを構築した。
事前処理と機能構築の後、このデータセットを使用して複数の機械学習モデルをトレーニングし、テストしました。
関連論文リスト
- Naturalistic Music Decoding from EEG Data via Latent Diffusion Models [14.882764251306094]
本研究は,非侵襲的脳波データを用いて,高品質な音楽再生を実現するための最初の試みである。
我々は、パブリックなNMED-Tデータセットでモデルをトレーニングし、ニューラルネットワークベースのメトリクスを提案する定量的評価を行う。
論文 参考訳(メタデータ) (2024-05-15T03:26:01Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - A Perceptual Measure for Evaluating the Resynthesis of Automatic Music
Transcriptions [10.957528713294874]
本研究では,室内音響や楽器などの環境要因が変化した場合の演奏の知覚に焦点を当てた。
我々は「演出」の概念と「芸術的意図」を表現する「解釈」の概念を区別することを提案する。
論文 参考訳(メタデータ) (2022-02-24T18:09:22Z) - Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation [34.726185927120355]
脳波の重み付けとして音楽信号を用い,その意味的対応を共通の表現空間に投影することを目的としている。
我々は、LSTMに基づくアテンションモデルと、音楽タギングのための事前訓練されたモデルを組み合わせたバイモーダル・フレームワークと、その2つのモードの分布を整列するリバース・ドメイン・ディミネータを併用して、バイモーダル・フレームワークを利用する。
脳波入力クエリに関連音楽サンプルを提供することにより、モダリティのいずれからも、間接的に、教師付き予測を行うことで、感情認識に利用することができる。
論文 参考訳(メタデータ) (2022-02-20T07:32:12Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - A data acquisition setup for data driven acoustic design [47.46576747982182]
本研究では, 拡散面構造と音響特性の関係について, 新たな学際的アプローチを提案する。
計算設計を用いて、表面構造は反復的に生成され、1:10スケールで3Dプリントされる。
自動化されたロボットプロセスは、マイクロフォンとスピーカーを複数の場所に配置することで、これらの表面のインパルス応答を測定する。
論文 参考訳(メタデータ) (2021-09-24T15:20:02Z) - Deep Neural Network for Musical Instrument Recognition using MFCCs [0.6445605125467573]
楽器認識は、その音響によって楽器の識別を行うタスクである。
本稿では,20種類の楽器の分類を訓練した人工ニューラルネットワーク(ann)モデルを用いた。
論文 参考訳(メタデータ) (2021-05-03T15:10:34Z) - Cyclic Co-Learning of Sounding Object Visual Grounding and Sound
Separation [52.550684208734324]
音物体の視覚的接地と音声-視覚的音分離を共同学習できる循環的共学習パラダイムを提案する。
本稿では,提案フレームワークが両タスクの最近のアプローチを上回っていることを示す。
論文 参考訳(メタデータ) (2021-04-05T17:30:41Z) - Predicting Different Acoustic Features from EEG and towards direct
synthesis of Audio Waveform from EEG [3.5786621294068377]
著者らは脳波(EEG)の特徴から音声を合成するための予備的な結果を提供した。
深層学習モデルは生の脳波波形信号を入力とし、直接出力として音声波形を生成する。
本稿では,音声知覚・生成過程における非侵襲的脳波信号と音響的特徴の関連性について述べる。
論文 参考訳(メタデータ) (2020-05-29T05:50:03Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。