Towards Topic-Guided Conversational Recommender System
- URL: http://arxiv.org/abs/2010.04125v2
- Date: Mon, 2 Nov 2020 14:25:58 GMT
- Title: Towards Topic-Guided Conversational Recommender System
- Authors: Kun Zhou, Yuanhang Zhou, Wayne Xin Zhao, Xiaoke Wang and Ji-Rong Wen
- Abstract summary: We contribute a new CRS dataset named textbfTG-ReDial (textbfRecommendation through textbfTopic-textbfGuided textbfDialog)
We present the task of topic-guided conversational recommendation, and propose an effective approach to this task.
- Score: 80.3725246715938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational recommender systems (CRS) aim to recommend high-quality items
to users through interactive conversations. To develop an effective CRS, the
support of high-quality datasets is essential. Existing CRS datasets mainly
focus on immediate requests from users, while lack proactive guidance to the
recommendation scenario. In this paper, we contribute a new CRS dataset named
\textbf{TG-ReDial} (\textbf{Re}commendation through
\textbf{T}opic-\textbf{G}uided \textbf{Dial}og). Our dataset has two major
features. First, it incorporates topic threads to enforce natural semantic
transitions towards the recommendation scenario. Second, it is created in a
semi-automatic way, hence human annotation is more reasonable and controllable.
Based on TG-ReDial, we present the task of topic-guided conversational
recommendation, and propose an effective approach to this task. Extensive
experiments have demonstrated the effectiveness of our approach on three
sub-tasks, namely topic prediction, item recommendation and response
generation. TG-ReDial is available at https://github.com/RUCAIBox/TG-ReDial.
Related papers
- Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
We propose a knowledge graph based conversational recommender system (referred as KG-CRS)
Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, dynamically changing during the dialogue process by removing negative items or attributes.
We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph.
arXiv Detail & Related papers (2024-08-02T15:38:55Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Alleviating the Long-Tail Problem in Conversational Recommender Systems [72.8984755843184]
Conversational recommender systems (CRS) aim to provide the recommendation service via natural language conversations.
Existing CRS datasets suffer from the long-tail issue, ie a large proportion of items are rarely (or even never) mentioned in the conversations.
This paper presents textbfLOT-CRS, a novel framework that focuses on simulating and utilizing a balanced CRS dataset.
arXiv Detail & Related papers (2023-07-21T15:28:47Z) - Conversational Recommendation as Retrieval: A Simple, Strong Baseline [4.737923227003888]
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation.
Most CRS approaches do not effectively utilize the signal provided by these conversations.
We propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task.
arXiv Detail & Related papers (2023-05-23T06:21:31Z) - EGCR: Explanation Generation for Conversational Recommendation [7.496434082286226]
Explanation Generation for Conversational Recommendation (EGCR) based on generating explanations for conversational agents to explain why they make the action.
EGCR incorporates user reviews to enhance the item representation and increase the informativeness of the whole conversation.
We evaluate EGCR on one benchmark conversational recommendation datasets and achieve better performance on both recommendation accuracy and conversation quality than other state-of-the art models.
arXiv Detail & Related papers (2022-08-17T02:30:41Z) - Learning to Ask Appropriate Questions in Conversational Recommendation [49.31942688227828]
We propose the Knowledge-Based Question Generation System (KBQG), a novel framework for conversational recommendation.
KBQG models a user's preference in a finer granularity by identifying the most relevant relations from a structured knowledge graph.
Finially, accurate recommendations can be generated in fewer conversational turns.
arXiv Detail & Related papers (2021-05-11T03:58:10Z) - Leveraging Historical Interaction Data for Improving Conversational
Recommender System [105.90963882850265]
We propose a novel pre-training approach to integrate item- and attribute-based preference sequence.
Experiment results on two real-world datasets have demonstrated the effectiveness of our approach.
arXiv Detail & Related papers (2020-08-19T03:43:50Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations.
First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference.
Second, there is a semantic gap between natural language expression and item-level user preference.
arXiv Detail & Related papers (2020-07-08T11:14:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.