論文の概要: Robust Instance Tracking via Uncertainty Flow
- arxiv url: http://arxiv.org/abs/2010.04367v1
- Date: Fri, 9 Oct 2020 04:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 05:50:48.766818
- Title: Robust Instance Tracking via Uncertainty Flow
- Title(参考訳): 不確実性フローによるロバストインスタンス追跡
- Authors: Jianing Qian, Junyu Nan, Siddharth Ancha, Brian Okorn, David Held
- Abstract要約: 現在の最先端のトラッカーは、しばしばイントラクタと大きなオブジェクトの外観の変化のために失敗する。
本稿では、外見と流れの不確実性情報を組み合わせて、困難なシナリオにおける物体の追跡を行う新しい追跡フレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.879698977724054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current state-of-the-art trackers often fail due to distractorsand large
object appearance changes. In this work, we explore the use ofdense optical
flow to improve tracking robustness. Our main insight is that, because flow
estimation can also have errors, we need to incorporate an estimate of flow
uncertainty for robust tracking. We present a novel tracking framework which
combines appearance and flow uncertainty information to track objects in
challenging scenarios. We experimentally verify that our framework improves
tracking robustness, leading to new state-of-the-art results. Further, our
experimental ablations shows the importance of flow uncertainty for robust
tracking.
- Abstract(参考訳): 現在の最先端のトラッカーは、しばしば邪魔と大きなオブジェクトの外観変更のために失敗する。
本研究では,トラッキングロバスト性を改善するためのofdense光フローについて検討する。
我々の主な洞察は、フロー推定にも誤りがあるため、ロバストなトラッキングのためにフローの不確実性の推定を組み込む必要があるということである。
本稿では,外見と流れの不確実性情報を組み合わせた新しい追跡フレームワークを提案する。
我々のフレームワークがトラッキングロバスト性を改善し、新たな最先端結果をもたらすことを実験的に検証した。
さらに,ロバスト追跡における流れの不確かさの重要性を実験的に示した。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
本稿では,LEAP(Long-term Effective Any Point Tracking)モジュールについて述べる。
LEAPは、動的トラック推定のために、視覚的、トラック間、時間的キューと慎重に選択されたアンカーを革新的に組み合わせている。
これらの特徴に基づき,強靭な視力計測システムLEAP-VOを開発した。
論文 参考訳(メタデータ) (2024-01-03T18:57:27Z) - Uncertainty-aware Unsupervised Multi-Object Tracking [33.53331700312752]
教師なしマルチオブジェクトトラッカーは、信頼できる機能埋め込みの学習に劣る。
最近の自己監督技術は採用されているが、時間的関係を捉えられなかった。
本稿では、不確実性問題は避けられないが、不確実性自体を活用して学習された一貫性を向上させることができると論じる。
論文 参考訳(メタデータ) (2023-07-28T09:03:06Z) - AiATrack: Attention in Attention for Transformer Visual Tracking [89.94386868729332]
トランスフォーマートラッカーは近年,注目機構が重要な役割を担っている,目覚ましい進歩を遂げている。
我々は,すべての相関ベクトル間のコンセンサスを求めることにより,適切な相関性を高め,誤相関を抑制する注意モジュール(AiA)を提案する。
我々のAiAモジュールは自己認識ブロックとクロスアテンションブロックの両方に容易に適用でき、視覚追跡のための特徴集約と情報伝達を容易にする。
論文 参考訳(メタデータ) (2022-07-20T00:44:03Z) - Continuity-Discrimination Convolutional Neural Network for Visual Object
Tracking [150.51667609413312]
本稿では,視覚オブジェクト追跡のためのContinuity-Discrimination Convolutional Neural Network (CD-CNN) という新しいモデルを提案する。
この問題に対処するため、cd-cnnは時間的遅れの概念に基づいた時間的外観連続性をモデル化する。
不正確なターゲットの定位とドリフトを緩和するために,新しい概念 object-centroid を提案する。
論文 参考訳(メタデータ) (2021-04-18T06:35:03Z) - Predictive Visual Tracking: A New Benchmark and Baseline Approach [27.87099869398515]
実世界のシナリオでは、画像ストリームのオンボード処理時間が必然的に追跡結果と実世界の状態との間に不一致をもたらす。
既存のビジュアルトラッキングベンチマークは、一般的にトラッカーをオフラインで実行し、評価においてそのような遅延を無視する。
本研究は,より現実的な遅延認識トラッキング問題に対処することを目的としている。
論文 参考訳(メタデータ) (2021-03-08T01:50:05Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
不確実性は、認識システムのエラーに対処し、堅牢性を改善するのに役立ちます。
本稿では,SECOND検出器に不確実性レグレッションを追加することにより,目標追尾性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2020-11-04T21:53:31Z) - What Matters in Unsupervised Optical Flow [51.45112526506455]
教師なし光流における鍵成分の集合を比較し解析する。
教師なしフローモデルに対する新しい改良点を多数構築する。
本稿では,従来の最先端技術よりもはるかに優れた非教師なしフロー技術を提案する。
論文 参考訳(メタデータ) (2020-06-08T19:36:26Z) - Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems [1.6037469030022993]
信頼強化検出(CTD)は、中間状態によく似たフレームのオブジェクト検出を戦略的に回避する革新的な手法である。
CTDは追跡速度を向上するだけでなく、既存の追跡アルゴリズムを超越して精度も維持する。
本実験はCTDフレームワークの堅牢性と汎用性を実証し,資源制約環境におけるリアルタイムトラッキングの実現の可能性を示した。
論文 参考訳(メタデータ) (2019-02-02T01:52:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。