論文の概要: UncTrack: Reliable Visual Object Tracking with Uncertainty-Aware Prototype Memory Network
- arxiv url: http://arxiv.org/abs/2503.12888v1
- Date: Mon, 17 Mar 2025 07:33:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:34.795536
- Title: UncTrack: Reliable Visual Object Tracking with Uncertainty-Aware Prototype Memory Network
- Title(参考訳): UncTrack: 不確実性を認識したプロトタイプメモリネットワークによる信頼性の高いビジュアルオブジェクト追跡
- Authors: Siyuan Yao, Yang Guo, Yanyang Yan, Wenqi Ren, Xiaochun Cao,
- Abstract要約: UncTrackは、標的位置の不確実性を予測する新しい不確実性対応トランスフォーマーである。
本手法は実験における他の最先端手法よりも優れる。
- 参考スコア(独自算出の注目度): 75.9933952886197
- License:
- Abstract: Transformer-based trackers have achieved promising success and become the dominant tracking paradigm due to their accuracy and efficiency. Despite the substantial progress, most of the existing approaches tackle object tracking as a deterministic coordinate regression problem, while the target localization uncertainty has been greatly overlooked, which hampers trackers' ability to maintain reliable target state prediction in challenging scenarios. To address this issue, we propose UncTrack, a novel uncertainty-aware transformer tracker that predicts the target localization uncertainty and incorporates this uncertainty information for accurate target state inference. Specifically, UncTrack utilizes a transformer encoder to perform feature interaction between template and search images. The output features are passed into an uncertainty-aware localization decoder (ULD) to coarsely predict the corner-based localization and the corresponding localization uncertainty. Then the localization uncertainty is sent into a prototype memory network (PMN) to excavate valuable historical information to identify whether the target state prediction is reliable or not. To enhance the template representation, the samples with high confidence are fed back into the prototype memory bank for memory updating, making the tracker more robust to challenging appearance variations. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods. Our code is available at https://github.com/ManOfStory/UncTrack.
- Abstract(参考訳): トランスフォーマーベースのトラッカーは、その正確さと効率性から、有望な成功を達成し、主要な追跡パラダイムとなった。
かなりの進歩にもかかわらず、既存のアプローチのほとんどは、決定論的座標回帰問題としてオブジェクト追跡に取り組み、ターゲットの局所化の不確実性は大幅に見落とされ、トラッカーが困難なシナリオにおいて信頼性の高い目標状態予測を維持する能力が損なわれている。
この問題に対処するため,新しい不確実性対応トランスフォーマトラッカーUncTrackを提案する。
具体的には、UncTrackは変換器エンコーダを使用してテンプレートと検索画像間の特徴的相互作用を実行する。
出力特徴を不確実性認識ローカライゼーションデコーダ(ULD)に渡して、コーナーベースのローカライゼーションとそれに対応するローカライゼーション不確実性を粗末に予測する。
そして、そのローカライゼーション不確実性をプロトタイプメモリネットワーク(PMN)に送信し、貴重な歴史的情報を発掘して、目標状態の予測が信頼できるか否かを判定する。
テンプレート表現を強化するため、信頼性の高いサンプルはメモリ更新のためにプロトタイプメモリバンクに送り返され、トラッカーがより堅牢になり、外観の変化が困難になる。
大規模な実験により,本手法が他の最先端手法よりも優れていることが示された。
私たちのコードはhttps://github.com/ManOfStory/UncTrack.comから入手可能です。
関連論文リスト
- UTrack: Multi-Object Tracking with Uncertain Detections [37.826006378381955]
我々は,物体検出中に経験的予測分布を得るための高速な手法を初めて紹介する。
我々の機構は最先端のトラッカーに容易に統合でき、検出の不確実性を完全に活用できる。
我々は,MOT17,MOT20,DanceTrack,KITTIなど,さまざまなベンチマークに対するコントリビューションの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-30T08:34:51Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - UncertaintyTrack: Exploiting Detection and Localization Uncertainty in Multi-Object Tracking [8.645078288584305]
マルチオブジェクトトラッキング(MOT)手法は近年,性能が大幅に向上している。
複数のTBDトラッカーに適用可能なエクステンションのコレクションであるUncertaintyTrackを紹介します。
バークレーディープドライブMOTデータセットの実験では、我々の手法と情報的不確実性推定の組み合わせにより、IDスイッチの数を約19%削減している。
論文 参考訳(メタデータ) (2024-02-19T17:27:04Z) - Adaptive Confidence Threshold for ByteTrack in Multi-Object Tracking [9.156625199253947]
ByteTrackは単純なトラッキングアルゴリズムであり、複数のオブジェクトの同時トラッキングを可能にする。
本稿では,高信頼度検出と低信頼度検出を区別する新しい適応手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T06:01:46Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
本稿では,セグメント化に基づく変形可能な視覚追跡手法の識別を強化するために,コンパクトなメモリ埋め込みを提案する。
DAVIS 2017ベンチマークでは,D3SやSiamMaskなどのセグメンテーションベースのトラッカーよりも優れている。
論文 参考訳(メタデータ) (2021-11-23T03:07:12Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
不確実性は、認識システムのエラーに対処し、堅牢性を改善するのに役立ちます。
本稿では,SECOND検出器に不確実性レグレッションを追加することにより,目標追尾性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2020-11-04T21:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。