WHO 2016 subtyping and automated segmentation of glioma using multi-task
deep learning
- URL: http://arxiv.org/abs/2010.04425v1
- Date: Fri, 9 Oct 2020 08:18:53 GMT
- Title: WHO 2016 subtyping and automated segmentation of glioma using multi-task
deep learning
- Authors: Sebastian R. van der Voort, Fatih Incekara, Maarten M.J. Wijnenga,
Georgios Kapsas, Renske Gahrmann, Joost W. Schouten, Rishi Nandoe Tewarie,
Geert J. Lycklama, Philip C. De Witt Hamer, Roelant S. Eijgelaar, Pim J.
French, Hendrikus J. Dubbink, Arnaud J.P.E. Vincent, Wiro J. Niessen, Martin
J. van den Bent, Marion Smits, Stefan Klein
- Abstract summary: We developed a single multi-task convolutional neural network that can predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor.
We tested our method on an independent dataset of 240 patients from 13 different institutes, and achieved an IDH-AUC of 0.90, 1p/19q-AUC of 0.85, grade-AUC of 0.81, and a mean whole tumor DICE score of 0.84.
- Score: 2.8881360490071786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate characterization of glioma is crucial for clinical decision making.
A delineation of the tumor is also desirable in the initial decision stages but
is a time-consuming task. Leveraging the latest GPU capabilities, we developed
a single multi-task convolutional neural network that uses the full 3D,
structural, pre-operative MRI scans to can predict the IDH mutation status, the
1p/19q co-deletion status, and the grade of a tumor, while simultaneously
segmenting the tumor. We trained our method using the largest, most diverse
patient cohort to date containing 1508 glioma patients from 16 institutes. We
tested our method on an independent dataset of 240 patients from 13 different
institutes, and achieved an IDH-AUC of 0.90, 1p/19q-AUC of 0.85, grade-AUC of
0.81, and a mean whole tumor DICE score of 0.84. Thus, our method
non-invasively predicts multiple, clinically relevant parameters and
generalizes well to the broader clinical population.
Related papers
- Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
arXiv Detail & Related papers (2023-04-18T10:14:45Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
Isocitrate dehydrogenase mutation and 1p/19q codeletion status are important prognostic markers for glioma.
Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI.
A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status.
arXiv Detail & Related papers (2022-10-07T18:46:39Z) - Preoperative brain tumor imaging: models and software for segmentation
and standardized reporting [0.0]
We investigate glioblastomas, lower grade gliomas, meningiomas, and metastases through four cohorts of up to 4000 patients.
Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols.
Two software solutions have been developed, enabling an easy use of the trained models and standardized clinical reports.
arXiv Detail & Related papers (2022-04-29T16:29:17Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined.
Recent work has focused on using genomics and transcriptomics for identification of tumor origins.
We present a deep learning-based computational pathology algorithm that can provide a differential diagnosis for CUP.
arXiv Detail & Related papers (2020-06-24T17:59:36Z) - CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint
Identification and Severity Quantification [45.86448200141968]
We describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight studies of severe patients and direct them to a hospital or provide emergency medical care.
We propose a multitask approach to consolidate both triage approaches and propose a convolutional neural network to combine all available labels within a single model.
We train our model on approximately 2000 publicly available CT studies and test it with a carefully designed set consisting of 32 COVID-19 studies, 30 cases with bacterial pneumonia, 31 healthy patients, and 30 patients with other lung pathologies to emulate a typical patient flow in
arXiv Detail & Related papers (2020-06-02T08:05:06Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients.
We developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports.
We also developed a model for multi-organ, multi-disease classification of chest CT volumes.
arXiv Detail & Related papers (2020-02-12T00:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.