Automated segmenta-on of pediatric neuroblastoma on multi-modal MRI: Results of the SPPIN challenge at MICCAI 2023
- URL: http://arxiv.org/abs/2505.00369v1
- Date: Thu, 01 May 2025 07:46:03 GMT
- Title: Automated segmenta-on of pediatric neuroblastoma on multi-modal MRI: Results of the SPPIN challenge at MICCAI 2023
- Authors: M. A. D. Buser, D. C. Simons, M. Fitski, M. H. W. A. Wijnen, A. S. Littooij, A. H. ter Brugge, I. N. Vos, M. H. A. Janse, M. de Boer, R. ter Maat, J. Sato, S. Kido, S. Kondo, S. Kasai, M. Wodzinski, H. Muller, J. Ye, J. He, Y. Kirchhoff, M. R. Rokkus, G. Haokai, S. Zitong, M. Fernández-Patón, D. Veiga-Canuto, D. G. Ellis, M. R. Aizenberg, B. H. M. van der Velden, H. Kuijf, A. De Luca, A. F. W. van der Steeg,
- Abstract summary: Surgical Planning in Pediatric Neuroblastoma (SPPIN) challenge was held at MICCAI 2023.<n>The highest-ranking team achieved a median Dice score 0.82, a median HD95 of 7.69 mm and a VS of 0.91.<n>Highest-ranking team used a large pre-trained network, suggesting that pretraining can be of use in small, heterogenous datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surgery plays an important role within the treatment for neuroblastoma, a common pediatric cancer. This requires careful planning, often via magnetic resonance imaging (MRI)-based anatomical 3D models. However, creating these models is often time-consuming and user dependent. We organized the Surgical Planning in Pediatric Neuroblastoma (SPPIN) challenge, to stimulate developments on this topic, and set a benchmark for fully automatic segmentation of neuroblastoma on multi-model MRI. The challenge started with a training phase, where teams received 78 sets of MRI scans from 34 patients, consisting of both diagnostic and post-chemotherapy MRI scans. The final test phase, consisting of 18 MRI sets from 9 patients, determined the ranking of the teams. Ranking was based on the Dice similarity coefficient (Dice score), the 95th percentile of the Hausdorff distance (HD95) and the volumetric similarity (VS). The SPPIN challenge was hosted at MICCAI 2023. The final leaderboard consisted of 9 teams. The highest-ranking team achieved a median Dice score 0.82, a median HD95 of 7.69 mm and a VS of 0.91, utilizing a large, pretrained network called STU-Net. A significant difference for the segmentation results between diagnostic and post-chemotherapy MRI scans was observed (Dice = 0.89 vs Dice = 0.59, P = 0.01) for the highest-ranking team. SPPIN is the first medical segmentation challenge in extracranial pediatric oncology. The highest-ranking team used a large pre-trained network, suggesting that pretraining can be of use in small, heterogenous datasets. Although the results of the highest-ranking team were high for most patients, segmentation especially in small, pre-treated tumors were insufficient. Therefore, more reliable segmentation methods are needed to create clinically applicable models to aid surgical planning in pediatric neuroblastoma.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
A nnU-Net model (TotalSegmentator) was trained on MRI and segment 80atomic structures.<n>Dice scores were calculated between the predicted segmentations and expert reference standard segmentations to evaluate model performance.<n>Open-source, easy-to-use model allows for automatic, robust segmentation of 80 structures.
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.<n>The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.<n>The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Training and Comparison of nnU-Net and DeepMedic Methods for
Autosegmentation of Pediatric Brain Tumors [0.08519384144663283]
Two deep learning-based 3D segmentation models, DeepMedic and nnU-Net, were compared.
Pediatric-specific data trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors.
arXiv Detail & Related papers (2024-01-16T14:44:06Z) - Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS
2022 Challenge Solution [0.0]
This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge.
We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI.
It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively.
arXiv Detail & Related papers (2022-12-19T09:14:23Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
We propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI.
Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions.
arXiv Detail & Related papers (2021-12-13T10:51:20Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - WHO 2016 subtyping and automated segmentation of glioma using multi-task
deep learning [2.8881360490071786]
We developed a single multi-task convolutional neural network that can predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor.
We tested our method on an independent dataset of 240 patients from 13 different institutes, and achieved an IDH-AUC of 0.90, 1p/19q-AUC of 0.85, grade-AUC of 0.81, and a mean whole tumor DICE score of 0.84.
arXiv Detail & Related papers (2020-10-09T08:18:53Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.