Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks
- URL: http://arxiv.org/abs/2304.08881v1
- Date: Tue, 18 Apr 2023 10:14:45 GMT
- Title: Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks
- Authors: Ragnhild Holden Helland, Alexandros Ferles, Andr\'e Pedersen, Ivar
Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S. Berger,
Tora Dun{\aa}s, Marco Conti Nibali, Julia Furtner, Shawn Hervey-Jumper,
Albert J. S. Idema, Barbara Kiesel, Rishi Nandoe Tewari, Emmanuel Mandonnet,
Domenique M.J. M\"uller, Pierre A. Robe, Marco Rossi, Lisa M. Sagberg,
Tommaso Sciortino, Tom Aalders, Michiel Wagemakers, Georg Widhalm, Marnix G.
Witte, Aeilko H. Zwinderman, Paulina L. Majewska, Asgeir S. Jakola, Ole
Solheim, Philip C. De Witt Hamer, Ingerid Reinertsen, Roelant S. Eijgelaar,
and David Bouget
- Abstract summary: Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
- Score: 33.51490233427579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extent of resection after surgery is one of the main prognostic factors for
patients diagnosed with glioblastoma. To achieve this, accurate segmentation
and classification of residual tumor from post-operative MR images is
essential. The current standard method for estimating it is subject to high
inter- and intra-rater variability, and an automated method for segmentation of
residual tumor in early post-operative MRI could lead to a more accurate
estimation of extent of resection. In this study, two state-of-the-art neural
network architectures for pre-operative segmentation were trained for the task.
The models were extensively validated on a multicenter dataset with nearly 1000
patients, from 12 hospitals in Europe and the United States. The best
performance achieved was a 61\% Dice score, and the best classification
performance was about 80\% balanced accuracy, with a demonstrated ability to
generalize across hospitals. In addition, the segmentation performance of the
best models was on par with human expert raters. The predicted segmentations
can be used to accurately classify the patients into those with residual tumor,
and those with gross total resection.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Raidionics: an open software for pre- and postoperative central nervous
system tumor segmentation and standardized reporting [0.1759008116536278]
The Raidionics software is an open-source tool for standardized and automatic tumor segmentation and generation of clinical reports.
The software includes preoperative and postsurgical segmentation models for all major tumor types.
The generation of a standardized clinical report, including the tumor segmentation and features, requires about ten minutes on a regular laptop.
arXiv Detail & Related papers (2023-04-28T12:40:01Z) - Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning [7.165205048529115]
We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth.
The classification is realized via the maximum-relevance minimal-redundancy (MRMR) technique and support vector machines (SVM)
The results indicate that risk stratification of BM based on radiomics and machine learning during post-SRT follow-up is possible with good accuracy and should be further pursued to personalize and improve post-SRT follow-up.
arXiv Detail & Related papers (2023-02-17T10:55:18Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
arXiv Detail & Related papers (2022-10-06T18:23:42Z) - Automated Segmentation and Recurrence Risk Prediction of Surgically
Resected Lung Tumors with Adaptive Convolutional Neural Networks [3.5413688566798096]
Lung cancer is the leading cause of cancer related mortality by a significant margin.
In this paper, we explore the use of convolutional neural networks (CNNs) for the segmentation and recurrence risk prediction of lung tumors.
To the best of our knowledge, it is the first fully automated segmentation and recurrence risk prediction system.
arXiv Detail & Related papers (2022-09-17T23:06:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.