Hierarchical Evidence Set Modeling for Automated Fact Extraction and
Verification
- URL: http://arxiv.org/abs/2010.05111v1
- Date: Sat, 10 Oct 2020 22:27:17 GMT
- Title: Hierarchical Evidence Set Modeling for Automated Fact Extraction and
Verification
- Authors: Shyam Subramanian, Kyumin Lee
- Abstract summary: Hierarchical Evidence Set Modeling (HESM) is a framework to extract evidence sets and verify a claim to be supported, refuted or not enough info.
Our experimental results show that HESM outperforms 7 state-of-the-art methods for fact extraction and claim verification.
- Score: 5.836068916903788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated fact extraction and verification is a challenging task that
involves finding relevant evidence sentences from a reliable corpus to verify
the truthfulness of a claim. Existing models either (i) concatenate all the
evidence sentences, leading to the inclusion of redundant and noisy
information; or (ii) process each claim-evidence sentence pair separately and
aggregate all of them later, missing the early combination of related sentences
for more accurate claim verification. Unlike the prior works, in this paper, we
propose Hierarchical Evidence Set Modeling (HESM), a framework to extract
evidence sets (each of which may contain multiple evidence sentences), and
verify a claim to be supported, refuted or not enough info, by encoding and
attending the claim and evidence sets at different levels of hierarchy. Our
experimental results show that HESM outperforms 7 state-of-the-art methods for
fact extraction and claim verification. Our source code is available at
https://github.com/ShyamSubramanian/HESM.
Related papers
- Navigating the Noisy Crowd: Finding Key Information for Claim Verification [19.769771741059408]
We propose EACon, a framework designed to find key information within evidence and verify each aspect of a claim separately.
Eccon finds keywords from the claim and employs fuzzy matching to select relevant keywords for each raw evidence piece.
Eccon deconstructs the original claim into subclaims, which are then verified against both abstracted and raw evidence individually.
arXiv Detail & Related papers (2024-07-17T09:24:10Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
We propose a fact verification model named ReRead to retrieve evidence and verify claim.
The proposed system is able to achieve significant improvements upon best-reported models under different settings.
arXiv Detail & Related papers (2023-05-02T03:23:14Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia.
In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim.
We show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
arXiv Detail & Related papers (2023-03-02T17:45:32Z) - Generating Literal and Implied Subquestions to Fact-check Complex Claims [64.81832149826035]
We focus on decomposing a complex claim into a comprehensive set of yes-no subquestions whose answers influence the veracity of the claim.
We present ClaimDecomp, a dataset of decompositions for over 1000 claims.
We show that these subquestions can help identify relevant evidence to fact-check the full claim and derive the veracity through their answers.
arXiv Detail & Related papers (2022-05-14T00:40:57Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.