論文の概要: Connecting the Dots Between Fact Verification and Fake News Detection
- arxiv url: http://arxiv.org/abs/2010.05202v1
- Date: Sun, 11 Oct 2020 09:28:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 12:49:13.544367
- Title: Connecting the Dots Between Fact Verification and Fake News Detection
- Title(参考訳): 事実検証と偽ニュース検出の間に点をつなぐ
- Authors: Qifei Li and Wangchunshu Zhou
- Abstract要約: 本稿では,事実検証と偽ニュース検出の点を結合する,シンプルで効果的な手法を提案する。
提案手法は,最近の事実検証モデルの成功を活用し,ゼロショットフェイクニュースの検出を可能にする。
- 参考スコア(独自算出の注目度): 21.564628184287173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fact verification models have enjoyed a fast advancement in the last two
years with the development of pre-trained language models like BERT and the
release of large scale datasets such as FEVER. However, the challenging problem
of fake news detection has not benefited from the improvement of fact
verification models, which is closely related to fake news detection. In this
paper, we propose a simple yet effective approach to connect the dots between
fact verification and fake news detection. Our approach first employs a text
summarization model pre-trained on news corpora to summarize the long news
article into a short claim. Then we use a fact verification model pre-trained
on the FEVER dataset to detect whether the input news article is real or fake.
Our approach makes use of the recent success of fact verification models and
enables zero-shot fake news detection, alleviating the need of large-scale
training data to train fake news detection models. Experimental results on
FakenewsNet, a benchmark dataset for fake news detection, demonstrate the
effectiveness of our proposed approach.
- Abstract(参考訳): ファクト検証モデルは、BERTのような事前訓練された言語モデルの開発とFEVERのような大規模データセットのリリースにより、過去2年間で急速に進歩した。
しかし、偽ニュース検出の難しさは、偽ニュース検出と密接に関連している事実検証モデルの改善の恩恵を受けていない。
本稿では,事実検証と偽ニュース検出の点を結合する,シンプルかつ効果的な手法を提案する。
本稿ではまず,ニュースコーパスに事前学習したテキスト要約モデルを用いて,長文記事を短い主張に要約する。
次に、FEVERデータセットに事前トレーニングされた事実検証モデルを用いて、入力されたニュース記事が本物か偽かを検出する。
提案手法は,近年のファクト検証モデルの成功を活かし,ゼロショットフェイクニュース検出を可能にし,フェイクニュース検出モデルをトレーニングするための大規模トレーニングデータの必要性を緩和する。
偽ニュース検出のためのベンチマークデータセットである fakenewsnet の実験結果は,提案手法の有効性を示している。
関連論文リスト
- Less is More: Unseen Domain Fake News Detection via Causal Propagation Substructures [13.80520305397377]
本稿では,Causal Subgraph-oriented Domain Adaptive Fake News Detectionモデルを提案する。
伝播グラフから因果部分構造を抽出することにより、ゼロショットフェイクニュースの検出を強化するように設計されている。
他の最先端モデルに比べて7~16パーセントの精度向上を実現している。
論文 参考訳(メタデータ) (2024-11-14T12:05:35Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Automated Evidence Collection for Fake News Detection [11.324403127916877]
本稿では,現在行われている偽ニュース検出手法を改良した新しい手法を提案する。
提案手法は,Web記事からエビデンスを抽出し,エビデンスとして扱うための適切なテキストを選択する。
我々の実験は、機械学習とディープラーニングに基づく手法の両方を用いて、我々のアプローチを広範囲に評価するのに役立つ。
論文 参考訳(メタデータ) (2021-12-13T09:38:41Z) - Explainable Tsetlin Machine framework for fake news detection with
credibility score assessment [16.457778420360537]
本稿では,最近導入されたTsetlin Machine (TM) に基づく,新たな解釈可能な偽ニュース検出フレームワークを提案する。
我々は、TMの接続節を用いて、真偽のニューステキストの語彙的および意味的特性をキャプチャする。
評価のために、PolitiFactとGossipCopという2つの公開データセットで実験を行い、TMフレームワークが以前公開されたベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-19T13:18:02Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - An Event Correlation Filtering Method for Fake News Detection [0.0]
既存のディープラーニングモデルは、偽ニュース検出の問題に取り組むために大きな進歩を遂げている。
偽ニュースの検出性能を向上させるために,ニュースのイベント相関を利用した。
イベント相関フィルタリング方式で偽ニュースを検出するためにECFMが提案されている。
論文 参考訳(メタデータ) (2020-12-10T07:31:07Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z) - Weak Supervision for Fake News Detection via Reinforcement Learning [34.448503443582396]
本稿では,弱教師付きフェイクニュース検出フレームワークWeFENDを提案する。
提案するフレームワークは,アノテータ,強化セレクタ,フェイクニュース検出器の3つの主要コンポーネントで構成されている。
WeChatの公式アカウントと関連するユーザレポートを通じて発行された大量のニュース記事に対して,提案したフレームワークを検証した。
論文 参考訳(メタデータ) (2019-12-28T21:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。