論文の概要: Few-shot Learning for Multi-label Intent Detection
- arxiv url: http://arxiv.org/abs/2010.05256v1
- Date: Sun, 11 Oct 2020 14:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 12:48:39.632396
- Title: Few-shot Learning for Multi-label Intent Detection
- Title(参考訳): マルチラベルインテント検出のためのマイズショット学習
- Authors: Yutai Hou, Yongkui Lai, Yushan Wu, Wanxiang Che, Ting Liu
- Abstract要約: State-of-the-art work estimates label-instancelevance scores and using threshold to select multiple associated intent labels。
2つのデータセットの実験により、提案モデルが1ショットと5ショットの両方の設定において強いベースラインを著しく上回ることが示された。
- 参考スコア(独自算出の注目度): 59.66787898744991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the few-shot multi-label classification for user
intent detection. For multi-label intent detection, state-of-the-art work
estimates label-instance relevance scores and uses a threshold to select
multiple associated intent labels. To determine appropriate thresholds with
only a few examples, we first learn universal thresholding experience on
data-rich domains, and then adapt the thresholds to certain few-shot domains
with a calibration based on nonparametric learning. For better calculation of
label-instance relevance score, we introduce label name embedding as anchor
points in representation space, which refines representations of different
classes to be well-separated from each other. Experiments on two datasets show
that the proposed model significantly outperforms strong baselines in both
one-shot and five-shot settings.
- Abstract(参考訳): 本稿では,ユーザ意図検出のためのマイナショットマルチラベル分類について検討する。
マルチラベルインテント検出では、最先端の作業でラベル-インスタンス関連スコアを推定し、しきい値を使用して複数の関連するインテントラベルを選択する。
ごく少数の例で適切なしきい値を決定するために、まずデータリッチドメインの普遍的しきい値付け経験を学習し、次に非パラメトリック学習に基づいてキャリブレーションを施したいくつかのショットドメインにしきい値を適用する。
ラベル-インスタンス関連スコアのより良い計算のために,表現空間のアンカーポイントとしてラベル名埋め込みを導入し,異なるクラスの表現を互いに適切に分離する。
2つのデータセットの実験により、提案モデルが1ショットと5ショットの両方の設定において強いベースラインを著しく上回ることが示された。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
そこで本研究では,基礎的真理推定手法に適合する新しい局所化アルゴリズムを提案する。
また,本アルゴリズムは,TexBiGデータセット上でのトレーニングにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-18T13:08:44Z) - Robust Assignment of Labels for Active Learning with Sparse and Noisy
Annotations [0.17188280334580192]
監視された分類アルゴリズムは、世界中の多くの現実の問題を解決するために使用される。
残念なことに、多くのタスクに対して良質なアノテーションを取得することは、実際に行うには不可能か、あるいはコストがかかりすぎます。
サンプル空間のラベルのない部分を利用する2つの新しいアノテーション統一アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-25T19:40:41Z) - Identifying Incorrect Annotations in Multi-Label Classification Data [14.94741409713251]
マルチラベル分類データセットにおけるラベルの誤用例を見つけるアルゴリズムについて検討する。
本稿では、この設定に対する信頼学習フレームワークの拡張と、ラベルエラーのある事例を正しくラベル付けされたものよりも格付けするラベル品質スコアを提案する。
論文 参考訳(メタデータ) (2022-11-25T05:03:56Z) - Exploring the Limits of Natural Language Inference Based Setup for
Few-Shot Intent Detection [13.971616443394474]
汎用的なFewショットインテント検出は、より現実的だが難しいセットアップである。
自然言語推論に基づくシンプルで効果的な手法を用いる。
提案手法は,1ショットと5ショットのインテント検出タスクにおいて,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-12-14T14:47:23Z) - Out-of-Category Document Identification Using Target-Category Names as
Weak Supervision [64.671654559798]
Out-of-category Detection は、文書が不適格(またはターゲット)カテゴリと意味的関連性に応じて区別することを目的としている。
対象のカテゴリの1つに属する文書の信頼性を効果的に測定する,カテゴリ外検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-24T21:01:25Z) - Multi-label Few/Zero-shot Learning with Knowledge Aggregated from
Multiple Label Graphs [8.44680447457879]
本稿では,異なる意味的ラベル関係をコードする複数のラベルグラフから知識を融合する,シンプルな多グラフ集約モデルを提案する。
本研究は,多グラフ知識集約を用いた手法が,少数・ゼロショットラベルのほとんどすべてにおいて,大幅な性能向上を実現していることを示す。
論文 参考訳(メタデータ) (2020-10-15T01:15:43Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
我々は、入力(予測可能)に応じて予測しやすく、他の可能なラベル(表現可能)をうまく回復できるランドマークとして、ラベルの小さなサブセットを選択することを提案する。
我々は,ADM(Alternating Direction Method)を用いてこの問題を解決する。実世界のデータセットに関する実証研究により,本手法が他の最先端手法よりも優れた分類性能を実現することを示す。
論文 参考訳(メタデータ) (2020-08-16T11:07:44Z) - Cooperative Bi-path Metric for Few-shot Learning [50.98891758059389]
数発の分類問題の調査に2つの貢献をしている。
本稿では,従来の教師あり学習法において,ベースクラスで訓練されたシンプルで効果的なベースラインについて報告する。
本稿では, 基礎クラスと新しいクラス間の相関を利用して, 精度の向上を図る, 分類のための協調的二経路計量を提案する。
論文 参考訳(メタデータ) (2020-08-10T11:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。