論文の概要: H2O-Net: Self-Supervised Flood Segmentation via Adversarial Domain
Adaptation and Label Refinement
- arxiv url: http://arxiv.org/abs/2010.05309v1
- Date: Sun, 11 Oct 2020 18:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 12:58:32.711715
- Title: H2O-Net: Self-Supervised Flood Segmentation via Adversarial Domain
Adaptation and Label Refinement
- Title(参考訳): H2O-Net: Adversarial Domain Adaptation と Label Refinement による自己改善型フラッドセグメンテーション
- Authors: Peri Akiva, Matthew Purri, Kristin Dana, Beth Tellman, Tyler Anderson
- Abstract要約: H2O-Networkは、衛星や航空画像から洪水を分離する自己教師付きディープラーニング手法である。
H2O-Networkは、高解像度衛星画像におけるセマンティックセグメンテーションのドメイン適応ステップとして、水の存在と高い相関性を持つ信号を合成することを学ぶ。
H2O-Netは,衛星画像上での最先端セマンティックセマンティックセグメンテーション法を,それぞれ10%,12%の精度で,mIoUより優れていることを示す。
- 参考スコア(独自算出の注目度): 6.577064131678387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate flood detection in near real time via high resolution, high latency
satellite imagery is essential to prevent loss of lives by providing quick and
actionable information. Instruments and sensors useful for flood detection are
only available in low resolution, low latency satellites with region re-visit
periods of up to 16 days, making flood alerting systems that use such
satellites unreliable. This work presents H2O-Network, a self supervised deep
learning method to segment floods from satellites and aerial imagery by
bridging domain gap between low and high latency satellite and coarse-to-fine
label refinement. H2O-Net learns to synthesize signals highly correlative with
water presence as a domain adaptation step for semantic segmentation in high
resolution satellite imagery. Our work also proposes a self-supervision
mechanism, which does not require any hand annotation, used during training to
generate high quality ground truth data. We demonstrate that H2O-Net
outperforms the state-of-the-art semantic segmentation methods on satellite
imagery by 10% and 12% pixel accuracy and mIoU respectively for the task of
flood segmentation. We emphasize the generalizability of our model by
transferring model weights trained on satellite imagery to drone imagery, a
highly different sensor and domain.
- Abstract(参考訳): 高分解能・高遅延衛星画像による洪水の正確な検出は、迅速かつ実用的な情報を提供することで、生命の喪失を防止するために不可欠である。
浸水検知に有用な機器やセンサーは、低解像度の低遅延衛星で最大16日間の再視認できるため、そのような衛星を使用する洪水警報システムでは信頼性が低い。
H2O-Networkは、低遅延衛星と高遅延衛星の領域ギャップを埋めて、衛星と空中画像から洪水を分断する自己教師型深層学習手法である。
H2O-Netは、高解像度衛星画像におけるセマンティックセグメンテーションのドメイン適応ステップとして、水の存在と関連性の高い信号を合成することを学ぶ。
また,高品質な地上真実データを生成するために,手書きアノテーションを必要としない自己監督機構を提案する。
我々は,H2O-Netが,洪水セグメンテーションのタスクにおいて,衛星画像上の最先端セグメンテーション手法を10%,12%の精度で,mIoUよりも優れていることを示した。
衛星画像で訓練されたモデル重量を、高度に異なるセンサーとドメインであるドローン画像に転送することで、モデルの一般化性を強調する。
関連論文リスト
- Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
本稿では,地対衛星画像登録のための弱教師付き学習戦略を提案する。
地上画像ごとに正の衛星画像と負の衛星画像を導き出す。
また,クロスビュー画像の相対回転推定のための自己超越戦略を提案する。
論文 参考訳(メタデータ) (2024-09-10T12:57:16Z) - Real-Time Multi-Scene Visibility Enhancement for Promoting Navigational Safety of Vessels Under Complex Weather Conditions [48.529493393948435]
この可視光カメラは、インテリジェントな水上輸送システムにおいて、海洋表面の容器に不可欠なイメージングセンサーとして登場した。
視覚画像の画質は、複雑な気象条件下での様々な劣化に必然的に悩まされる。
本研究では,異なる気象条件下で撮影された劣化画像を復元する汎用多場面可視性向上手法を開発した。
論文 参考訳(メタデータ) (2024-09-02T23:46:27Z) - SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models [3.839322642354617]
我々はtextbfSatDiffMoE と呼ばれる新しい拡散型融合アルゴリズムを提案する。
アルゴリズムは非常に柔軟で、任意の数の低解像度画像のトレーニングと推測が可能である。
実験の結果,SatDiffMoE法は衛星画像の超解像処理に優れていた。
論文 参考訳(メタデータ) (2024-06-14T17:58:28Z) - EvaNet: Elevation-Guided Flood Extent Mapping on Earth Imagery (Extended Version) [11.820388725641312]
EvaNetはエンコーダ・デコーダアーキテクチャに基づく標高誘導セグメンテーションモデルである。
これは、洪水範囲マッピングのための既存のソリューションにおいて、U-Netの完全なドロップイン代替として機能する。
論文 参考訳(メタデータ) (2024-04-27T14:10:09Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
本研究は,UAV空中画像中の浸水領域を特定するための2つのアプローチを提案する。
最初のアプローチは、テクスチャベースの教師なしセグメンテーションを使用して、浸水した地域を検出する。
2つ目は、テクスチャ機能に人工ニューラルネットワークを使用して、画像が浸水して浮かばないものとして分類する。
論文 参考訳(メタデータ) (2022-10-04T13:11:44Z) - Towards Daily High-resolution Inundation Observations using Deep
Learning and EO [0.0]
絶え間ないリモートセンシングは、シンオプティクスの洪水モニタリングに費用対効果のあるソリューションを提供する。
衛星は、現在進行中の洪水イベントをカバーする際に、タイムリーな浸水情報を提供するが、様々なスケールで洪水の進化を監視する能力に関して、その解像度によって制限される。
空間分解能と低時間分解能を持つコペルニクス・センチネルのような衛星のデータと、NASA SMAPとGPMのミッションのデータは、日々の規模で高分解能の浸水を引き起こす可能性がある。
論文 参考訳(メタデータ) (2022-08-10T14:04:50Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
Masked Autoencoder(MAE)に基づく時間・マルチスペクトル衛星画像の事前学習フレームワークであるSatMAEについて述べる。
時間的情報を活用するために、時間にわたって画像パッチを個別にマスキングする時間的埋め込みを含む。
論文 参考訳(メタデータ) (2022-07-17T01:35:29Z) - Attentive Dual Stream Siamese U-net for Flood Detection on
Multi-temporal Sentinel-1 Data [0.0]
両時間SARによる洪水検知ネットワークを提案する。
提案するセグメンテーションネットワークは,2つのシームズエンコーダを用いたエンコーダ・デコーダアーキテクチャを備え,プレフロッド画像とポストフロッド画像の符号化を行う。
このネットワークは、既存の最先端(一時期)の洪水検出手法を6%のIOUで上回った。
論文 参考訳(メタデータ) (2022-04-20T10:56:39Z) - Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional
Pixel Synthesis [66.50914391487747]
高精度な高解像度画像を生成するために,高解像度の高解像度画像を用いた条件付き画素合成モデルを提案する。
我々は,本モデルにおいて,オブジェクトカウントという重要なダウンストリームタスクにおいて,フォトリアリスティックなサンプル品質を実現し,競合するベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-22T02:16:24Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
本研究は,超解像(SR)による画質向上により,画質と価格のギャップを埋めることを提案する。
低解像度画像の各パッチの地域情報内容を解析するSRフレームワークを設計する。
本研究では,既存の深部SR法と同等の性能を示しながら,推定時間を大幅に減少させることを示した。
論文 参考訳(メタデータ) (2020-08-03T13:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。