論文の概要: Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards
- arxiv url: http://arxiv.org/abs/2010.05567v1
- Date: Mon, 12 Oct 2020 09:36:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 06:40:54.819318
- Title: Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards
- Title(参考訳): 文書レベルのクロスタスクコヒーレンス報酬を用いた共同意味分析
- Authors: Rahul Aralikatte, Mostafa Abdou, Heather Lent, Daniel Hershcovich,
Anders S{\o}gaard
- Abstract要約: 本稿では,共用コア参照解決のためのニューラルネットワークアーキテクチャと,英語のセマンティックロールラベリングについて述べる。
我々は、文書と意味的アノテーション間のグローバルコヒーレンスを促進するために強化学習を使用します。
これにより、異なるドメインからの複数のデータセットにおける両方のタスクが改善される。
- 参考スコア(独自算出の注目度): 13.753240692520098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coreference resolution and semantic role labeling are NLP tasks that capture
different aspects of semantics, indicating respectively, which expressions
refer to the same entity, and what semantic roles expressions serve in the
sentence. However, they are often closely interdependent, and both generally
necessitate natural language understanding. Do they form a coherent abstract
representation of documents? We present a neural network architecture for joint
coreference resolution and semantic role labeling for English, and train graph
neural networks to model the 'coherence' of the combined shallow semantic
graph. Using the resulting coherence score as a reward for our joint semantic
analyzer, we use reinforcement learning to encourage global coherence over the
document and between semantic annotations. This leads to improvements on both
tasks in multiple datasets from different domains, and across a range of
encoders of different expressivity, calling, we believe, for a more holistic
approach to semantics in NLP.
- Abstract(参考訳): 参照解決とセマンティックロールラベリングは、意味論の異なる側面をキャプチャするNLPタスクであり、それぞれ、どの表現が同じ実体を指し、どのセマンティックロールが文の中でどのような表現を提供するかを示す。
しかし、それらはしばしば密接に相互依存しており、どちらも一般的に自然言語の理解を必要とする。
それらは文書のコヒーレントな抽象表現を形成するか?
本稿では、英語の共用コア参照解決とセマンティックロールラベリングのためのニューラルネットワークアーキテクチャと、浅層セマンティックグラフの'コヒーレンス'をモデル化するトレーニンググラフニューラルネットワークを提案する。
共同セマンティックアナライザの報酬として得られたコヒーレンススコアを用いて、文書とセマンティックアノテーション間のグローバルコヒーレンスを促進するために強化学習を利用する。
これにより、異なるドメインからの複数のデータセットにおけるタスクと、異なる表現性を持つ幅広いエンコーダの両方が改善され、NLPのセマンティクスに対するより包括的なアプローチが期待できる。
関連論文リスト
- Data-driven Coreference-based Ontology Building [48.995395445597225]
参照解決は、伝統的に個々の文書理解のコンポーネントとして使用される。
よりグローバルな視点で、すべてのドキュメントレベルのコア参照関係から、ドメインについて何が学べるかを探求します。
コードとともに、クリエイティブ・コモンズライセンスの下でコア参照チェーンをリリースします。
論文 参考訳(メタデータ) (2024-10-22T14:30:40Z) - How well do distributed representations convey contextual lexical semantics: a Thesis Proposal [3.3585951129432323]
本稿では,現代ニューラルネットワークによる語彙意味の符号化における分散表現の有効性について検討する。
文脈に影響された意味の関連性と類似性に基づいて,曖昧さの4つの源を同定する。
次に、多言語データセットの収集や構築、様々な言語モデルの利用、言語解析ツールの利用により、これらの情報源を評価することを目的とする。
論文 参考訳(メタデータ) (2024-06-02T14:08:51Z) - Unified Lattice Graph Fusion for Chinese Named Entity Recognition [9.863877505377165]
中国語のエンティティ認識のための統一格子グラフ融合(ULGF)手法を提案する。
ノード表現を学習するために反復的にセマンティックな相互作用を実行する複数のグラフベースのイントラソース自己アテンションとソース間相互ゲージ融合層を積み重ねる。
論文 参考訳(メタデータ) (2023-12-28T09:31:25Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
CrossNERは多言語コーパスの不足により不均一な性能から生じる課題に直面している。
言語横断的名前付きエンティティ認識(mCL-NER)のためのマルチビューコントラスト学習を提案する。
40言語にまたがるXTREMEベンチマーク実験では、従来のデータ駆動型およびモデルベースアプローチよりもmCL-NERの方が優れていることを示した。
論文 参考訳(メタデータ) (2023-08-17T16:02:29Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
クロスドメイン感情分類(CDSC)は、ソースドメインから学んだ伝達可能なセマンティクスを使用して、ラベルなしのターゲットドメインにおけるレビューの感情を予測することを目的としている。
本稿では、単語列と構文グラフの両方からドメイン不変セマンティクスを学習できる適応型構文グラフ埋め込み法であるグラフ適応意味伝達(GAST)モデルを提案する。
論文 参考訳(メタデータ) (2022-05-18T07:47:01Z) - Regional Semantic Contrast and Aggregation for Weakly Supervised
Semantic Segmentation [25.231470587575238]
本稿では,意味的セグメンテーションを学習するための地域意味的コントラストとアグリゲーション(RCA)を提案する。
RCAは、訓練データに現れる多種多様なオブジェクトパターンを格納する地域記憶バンクを備えている。
RCAは、きめ細かいセマンティック理解の強い能力を獲得し、最終的には2つの人気のあるベンチマークで新しい最先端の結果を確立する。
論文 参考訳(メタデータ) (2022-03-17T23:29:03Z) - Image Synthesis via Semantic Composition [74.68191130898805]
本稿では,その意味的レイアウトに基づいて現実的なイメージを合成する新しい手法を提案する。
類似した外観を持つ物体に対して、類似した表現を共有するという仮説が立てられている。
本手法は, 空間的変化と関連表現の両方を生じる, 外観相関による領域間の依存関係を確立する。
論文 参考訳(メタデータ) (2021-09-15T02:26:07Z) - Multi-layered Semantic Representation Network for Multi-label Image
Classification [8.17894017454724]
マルチラベル画像分類(MLIC)は,複数の可能なラベルを画像に割り当てることを目的とした,基本的で実践的な課題である。
近年,多くのディープ畳み込みニューラルネットワーク(CNN)に基づく手法が提案され,ラベル相関がモデル化されている。
本稿では,ラベル相関のモデル化と意味表現の学習を改善することにより,この研究の方向性を推し進める。
論文 参考訳(メタデータ) (2021-06-22T08:04:22Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
WordNetの豊富なセマンティック構造を活用して、マルチセンス埋め込みの品質を高めます。
M-SEの新たな分布意味類似度測定法を先行して導出する。
WSDとWordの類似度タスクを含む11のベンチマークデータセットの評価結果を報告します。
論文 参考訳(メタデータ) (2021-02-27T14:36:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。