論文の概要: Semantic Representation and Inference for NLP
- arxiv url: http://arxiv.org/abs/2106.08117v1
- Date: Tue, 15 Jun 2021 13:22:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 20:32:46.073637
- Title: Semantic Representation and Inference for NLP
- Title(参考訳): NLPにおける意味表現と推論
- Authors: Dongsheng Wang
- Abstract要約: この論文は、新しい意味表現と推論のための深層学習の利用について考察する。
我々は,自動クレーム検証を目的とした,現実の事実クレームの公開データセットとして最大である。
語句表現を外部単語埋め込みと知識グラフで豊かにすることにより,句の構成性を文脈的に操作する。
- 参考スコア(独自算出の注目度): 2.969705152497174
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Semantic representation and inference is essential for Natural Language
Processing (NLP). The state of the art for semantic representation and
inference is deep learning, and particularly Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), and transformer Self-Attention models.
This thesis investigates the use of deep learning for novel semantic
representation and inference, and makes contributions in the following three
areas: creating training data, improving semantic representations and extending
inference learning. In terms of creating training data, we contribute the
largest publicly available dataset of real-life factual claims for the purpose
of automatic claim verification (MultiFC), and we present a novel inference
model composed of multi-scale CNNs with different kernel sizes that learn from
external sources to infer fact checking labels. In terms of improving semantic
representations, we contribute a novel model that captures non-compositional
semantic indicators. By definition, the meaning of a non-compositional phrase
cannot be inferred from the individual meanings of its composing words (e.g.,
hot dog). Motivated by this, we operationalize the compositionality of a phrase
contextually by enriching the phrase representation with external word
embeddings and knowledge graphs. Finally, in terms of inference learning, we
propose a series of novel deep learning architectures that improve inference by
using syntactic dependencies, by ensembling role guided attention heads,
incorporating gating layers, and concatenating multiple heads in novel and
effective ways. This thesis consists of seven publications (five published and
two under review).
- Abstract(参考訳): 意味表現と推論は自然言語処理(NLP)に不可欠である。
意味表現と推論のための技術の現状は、ディープラーニング、特にRecurrent Neural Networks(RNN)、Convolutional Neural Networks(CNN)、およびTransformer Self-Attention Modelである。
この論文は、新しい意味表現と推論のためのディープラーニングの利用を調査し、トレーニングデータの作成、意味表現の改善、推論学習の拡張という3つの領域に寄与する。
トレーニングデータの作成に関して,我々は,自動クレーム検証(multifc)を目的として,実生活事実クレームの最大公開データセットを寄贈し,外部ソースから学習し,事実チェックラベルを推測する,カーネルサイズが異なるマルチスケールcnnからなる新しい推論モデルを提案する。
セマンティクス表現の改善の観点からは,非コンポジション的セマンティクス指標を捉えた新しいモデルを提案する。
定義上、非構成語句の意味は、その構成語(例えば、ホットドッグ)の個々の意味から推測することはできない。
そこで我々は,語句表現を外部単語埋め込みと知識グラフで強化することにより,句の構成性を文脈的に操作する。
最後に, 推論学習の観点からは, 役割誘導型注意ヘッドの感覚化, ゲーティング層の導入, 複数頭部を新規かつ効果的に結合することにより, 構文依存を用いて推論を改善する, 一連の新しいディープラーニングアーキテクチャを提案する。
この論文は7つの出版物(5冊、レビュー中の2冊)からなる。
関連論文リスト
- Improving vision-language alignment with graph spiking hybrid Networks [6.707524980629404]
本稿では,細粒度のセマンティックな特徴を生成するために,パノプティックセマンティック・セマンティック・セマンティクスの活用を必要とする包括的ビジュアルセマンティクス表現モジュールを提案する。
視覚的セマンティック情報を符号化するために,SNNとGATの相補的な利点を統合したグラフスパイキングハイブリッドネットワーク(GSHN)を提案する。
論文 参考訳(メタデータ) (2025-01-31T11:55:17Z) - Neural Sequence-to-Sequence Modeling with Attention by Leveraging Deep Learning Architectures for Enhanced Contextual Understanding in Abstractive Text Summarization [0.0]
本稿では,単一文書の抽象TSのための新しいフレームワークを提案する。
構造、セマンティック、およびニューラルベースアプローチの3つの主要な側面を統合している。
その結果, 希少語, OOV語処理の大幅な改善が示唆された。
論文 参考訳(メタデータ) (2024-04-08T18:33:59Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
本稿では,コンテキスト情報を完全に活用する効率的なコンテキスト認識モデル(ECASE)を提案する。
文脈情報や議論情報を集約するために,シーケンスアテンションモジュールと距離重み付き類似度損失を導入する。
各種ドメインの5つのデータセットに対する実験により,我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-10-08T08:47:10Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - Pretraining on Interactions for Learning Grounded Affordance
Representations [22.290431852705662]
我々はニューラルネットワークを訓練し、シミュレーションされた相互作用において物体の軌道を予測する。
我々のネットワークの潜在表現は、観測された価格と観測されていない価格の両方を区別していることが示される。
提案する手法は,従来の語彙表現の形式的意味概念と統合可能な言語学習の手法である。
論文 参考訳(メタデータ) (2022-07-05T19:19:53Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
ビデオキャプションのためのマルチモーダルなニューラルシンボリック表現を学習するための新しいモデルアーキテクチャを提案する。
本手法では,ビデオ間の関係を学習する辞書学習手法と,そのペアによるテキスト記述を用いる。
論文 参考訳(メタデータ) (2020-11-18T20:21:19Z) - Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards [13.753240692520098]
本稿では,共用コア参照解決のためのニューラルネットワークアーキテクチャと,英語のセマンティックロールラベリングについて述べる。
我々は、文書と意味的アノテーション間のグローバルコヒーレンスを促進するために強化学習を使用します。
これにより、異なるドメインからの複数のデータセットにおける両方のタスクが改善される。
論文 参考訳(メタデータ) (2020-10-12T09:36:24Z) - Distributional semantic modeling: a revised technique to train term/word
vector space models applying the ontology-related approach [36.248702416150124]
ニューラルネットワークを用いた分散項表現(あるいは項埋め込み)学習による分布意味モデリングのための新しい手法を設計する。
Vec2graphは、動的かつインタラクティブなグラフとして単語埋め込み(私たちの場合の長期埋め込み)を視覚化するためのPythonライブラリである。
論文 参考訳(メタデータ) (2020-03-06T18:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。