Video Quality Enhancement Using Deep Learning-Based Prediction Models
for Quantized DCT Coefficients in MPEG I-frames
- URL: http://arxiv.org/abs/2010.05760v1
- Date: Fri, 9 Oct 2020 16:41:18 GMT
- Title: Video Quality Enhancement Using Deep Learning-Based Prediction Models
for Quantized DCT Coefficients in MPEG I-frames
- Authors: Antonio J G Busson, Paulo R C Mendes, Daniel de S Moraes, \'Alvaro M
da Veiga, \'Alan L V Guedes and S\'ergio Colcher
- Abstract summary: We propose a MPEG video decoder based on the frequency-to-frequency domain.
It reads the quantized DCT coefficients received from a low-quality I-frames bitstream and, using a deep learning-based model, predicts the missing coefficients in order to recompose the same frames with enhanced quality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have successfully applied some types of Convolutional Neural
Networks (CNNs) to reduce the noticeable distortion resulting from the lossy
JPEG/MPEG compression technique. Most of them are built upon the processing
made on the spatial domain. In this work, we propose a MPEG video decoder that
is purely based on the frequency-to-frequency domain: it reads the quantized
DCT coefficients received from a low-quality I-frames bitstream and, using a
deep learning-based model, predicts the missing coefficients in order to
recompose the same frames with enhanced quality. In experiments with a video
dataset, our best model was able to improve from frames with quantized DCT
coefficients corresponding to a Quality Factor (QF) of 10 to enhanced quality
frames with QF slightly near to 20.
Related papers
- NVRC: Neural Video Representation Compression [13.131842990481038]
We propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC)
NVRC, for the first time, is able to optimize an INR-based video in a fully end-to-end manner.
Our experiments show that NVRC outperforms many conventional and learning-based benchmark entropy.
arXiv Detail & Related papers (2024-09-11T16:57:12Z) - Prediction and Reference Quality Adaptation for Learned Video Compression [54.58691829087094]
We propose a confidence-based prediction quality adaptation (PQA) module to provide explicit discrimination for the spatial and channel-wise prediction quality difference.
We also propose a reference quality adaptation (RQA) module and an associated repeat-long training strategy to provide dynamic spatially variant filters for diverse reference qualities.
arXiv Detail & Related papers (2024-06-20T09:03:26Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Perceptually-inspired super-resolution of compressed videos [18.72040343193715]
spatial resolution adaptation is a technique which has often been employed in video compression to enhance coding efficiency.
Recent work has employed advanced super-resolution methods based on convolutional neural networks (CNNs) to further improve reconstruction quality.
In this paper, a perceptually-inspired super-resolution approach (M-SRGAN) is proposed for spatial upsampling of compressed video using a modified CNN model.
arXiv Detail & Related papers (2021-06-15T13:50:24Z) - Learned Multi-Resolution Variable-Rate Image Compression with
Octave-based Residual Blocks [15.308823742699039]
We propose a new variable-rate image compression framework, which employs generalized octave convolutions (GoConv) and generalized octave transposed-convolutions (GoTConv)
To enable a single model to operate with different bit rates and to learn multi-rate image features, a new objective function is introduced.
Experimental results show that the proposed framework trained with variable-rate objective function outperforms the standard codecs such as H.265/HEVC-based BPG and state-of-the-art learning-based variable-rate methods.
arXiv Detail & Related papers (2020-12-31T06:26:56Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
This paper presents PredEncoder, a hybrid video compression framework based on the concept of predictive auto-encoding.
A variable-rate block encoding scheme has been proposed in the paper that leads to remarkably high quality to bit-rate ratios.
arXiv Detail & Related papers (2020-04-08T20:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.