Unbounded randomness from uncharacterized sources
- URL: http://arxiv.org/abs/2010.05798v1
- Date: Mon, 12 Oct 2020 15:54:22 GMT
- Title: Unbounded randomness from uncharacterized sources
- Authors: Marco Avesani, Hamid Tebyanian, Paolo Villoresi, Giuseppe Vallone
- Abstract summary: In Device-Independent and Semi-Device-Independent scenarios, randomness is certified using projective measurements.
We propose a new Source-Device-Independent protocol, based on Positive Operator Valued Measurement (POVM)
We experimentally demonstrate our method with a compact and simple photonic setup that employs polarization-encoded qubits and POVM up to 6 outcomes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomness is a central feature of quantum mechanics and an invaluable
resource for both classical and quantum technologies. Commonly, in
Device-Independent and Semi-Device-Independent scenarios, randomness is
certified using projective measurements and the amount of certified randomness
is bounded by the dimension of the measured quantum system. In this work, we
propose a new Source-Device-Independent protocol, based on Positive Operator
Valued Measurement (POVM), which can arbitrarily increase the number of
certified bits for any fixed dimension. A tight lower-bound on the quantum
conditional min-entropy is derived using only the POVM structure and the
experimental expectation values, taking into account the quantum
side-information. For symmetrical POVM measurements on the Bloch sphere we have
derived closed-form analytical bounds. Finally, we experimentally demonstrate
our method with a compact and simple photonic setup that employs
polarization-encoded qubits and POVM up to 6 outcomes.
Related papers
- Generalized measurements on qubits in quantum randomness certification and expansion [0.0]
We investigate scenarios where generalized measurements can yield more than one bit of certified randomness.
We compare the robustness of several protocols to exhibit the advantage of exploiting generalized measurements.
Our exploration demonstrates the potential of generalized measurements to improve the certification of quantum sources of randomness.
arXiv Detail & Related papers (2024-10-14T20:47:57Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - A universal scheme to self-test any quantum state and extremal measurement [41.94295877935867]
quantum network considered in this work is the simple star network, which is implementable using current technologies.
For our purposes, we also construct a scheme that can be used to self-test the two-dimensional tomographically complete set of measurements with an arbitrary number of parties.
arXiv Detail & Related papers (2023-12-07T16:20:28Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Randomness-free Test of Non-classicality: a Proof of Concept [0.0]
Existing schemes to certify such non-classical resources in a device-independent manner require seed randomness.
We propose and experimentally implement a semi-device independent certification technique for both quantum correlations and non-projective measurements without seed randomness.
arXiv Detail & Related papers (2023-03-13T10:44:16Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Almost qudits in the prepare-and-measure scenario [0.0]
We introduce and investigate quantum information encoded in carriers that nearly, but not entirely, correspond to standard qudits.
We show how small higher-dimensional components can significantly compromise the conclusions of established protocols.
We also consider viewing almost qubit systems as a physical resource available to the experimenter.
arXiv Detail & Related papers (2022-08-16T18:00:07Z) - Quantifying multiparticle entanglement with randomized measurements [0.0]
We exploit the potential of randomized measurements in order to probe the amount of entanglement contained in multiparticle quantum systems.
We present a detailed statistical analysis of the underlying measurement resources required for a confident estimation of the introduced quantifiers.
arXiv Detail & Related papers (2022-07-27T20:22:23Z) - Semi-device-independent full randomness amplification based on energy
bounds [0.0]
Quantum Bell nonlocality allows for the design of protocols that amplify the randomness of public and arbitrarily biased Santha-Vazirani sources.
We prove that full randomness amplification can be achieved without requiring a complete characterization of entanglement states and measurements.
arXiv Detail & Related papers (2021-08-20T10:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.