Reducing the sampling complexity of energy estimation in quantum many-body systems using empirical variance information
- URL: http://arxiv.org/abs/2502.01730v1
- Date: Mon, 03 Feb 2025 19:00:01 GMT
- Title: Reducing the sampling complexity of energy estimation in quantum many-body systems using empirical variance information
- Authors: Alexander Gresch, Uğur Tepe, Martin Kliesch,
- Abstract summary: We consider the problem of estimating the energy of a quantum state preparation for a given Hamiltonian in Pauli decomposition.
We construct an adaptive estimator using the state's actual variance.
- Score: 45.18582668677648
- License:
- Abstract: We consider the problem of estimating the energy of a quantum state preparation for a given Hamiltonian in Pauli decomposition. For various quantum algorithms, in particular in the context of quantum chemistry, it is crucial to have energy estimates with error bounds, as captured by guarantees on the problem's sampling complexity. In particular, when limited to Pauli basis measurements, the smallest sampling complexity guarantee comes from a simple single-shot estimator via a straightforward argument based on Hoeffding's inequality. In this work, we construct an adaptive estimator using the state's actual variance. Technically, our estimation method is based on the Empirical Bernstein stopping (EBS) algorithm and grouping schemes, and we provide a rigorous tail bound, which leverages the state's empirical variance. In a numerical benchmark of estimating ground-state energies of several Hamiltonians, we demonstrate that EBS consistently improves upon elementary readout guarantees up to one order of magnitude.
Related papers
- Limit Distribution Theory for Quantum Divergences [8.11839312231511]
We show that a limit distribution theory which characterizes the fluctuations of the estimation error is still premature.
As an application of our results, we consider an estimator of quantum relative entropy based on Pauli tomography of quantum states and show that the resulting distribution is a normal, with its variance characterized in terms of the Pauli operators and states.
We utilize the knowledge of the aforementioned limit distribution to obtain performance guarantees for a multi-hypothesis testing problem.
arXiv Detail & Related papers (2023-11-22T21:06:41Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Quantizing Heavy-tailed Data in Statistical Estimation: (Near) Minimax
Rates, Covariate Quantization, and Uniform Recovery [22.267482745621997]
This paper studies the quantization of heavy-tailed data in some fundamental statistical estimation problems.
We propose to truncate and properly dither the data prior to a uniform quantization.
arXiv Detail & Related papers (2022-12-30T06:28:30Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Variational Approach to Quantum State Tomography based on Maximal
Entropy Formalism [3.6344381605841187]
We employ the maximal entropy formalism to construct the least biased mixed quantum state that is consistent with the given set of expectation values.
We employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to obtain such a target state making our recipe easily implementable on a near-term quantum device.
arXiv Detail & Related papers (2022-06-06T01:16:22Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Near-Optimal Quantum Algorithms for Multivariate Mean Estimation [0.0]
We propose the first near-optimal quantum algorithm for estimating in Euclidean norm the mean of a vector-valued random variable.
We exploit a variety of additional algorithmic techniques such as amplitude amplification, the Bernstein-Vazirani algorithm, and quantum singular value transformation.
arXiv Detail & Related papers (2021-11-18T16:35:32Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.