Jarzynski equality for conditional stochastic work
- URL: http://arxiv.org/abs/2010.05835v2
- Date: Wed, 7 Apr 2021 04:26:05 GMT
- Title: Jarzynski equality for conditional stochastic work
- Authors: Akira Sone and Sebastian Deffner
- Abstract summary: It has been established that the inclusive work for classical, Hamiltonian dynamics is equivalent to the two-time energy measurement paradigm in isolated quantum systems.
A plethora of other notions of quantum work has emerged, and thus the natural question arises whether any other quantum notion can provide motivation for purely classical considerations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been established that the inclusive work for classical, Hamiltonian
dynamics is equivalent to the two-time energy measurement paradigm in isolated
quantum systems. However, a plethora of other notions of quantum work has
emerged, and thus the natural question arises whether any other quantum notion
can provide motivation for purely classical considerations. In the present
analysis, we propose the conditional stochastic work for classical, Hamiltonian
dynamics, which is inspired by the one-time measurement approach. This novel
notion is built upon the change of expectation value of the energy conditioned
on the initial energy surface. As main results we obtain a generalized
Jarzynski equality and a sharper maximum work theorem, which account for how
non-adiabatic the process is. Our findings are illustrated with the parametric
harmonic oscillator.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Operational work fluctuation theorem for open quantum systems [0.0]
We propose a quantum fluctuation theorem that is valid for externally measurable quantum work determined during the driving protocol.
Our theorem comes in the form of an inequality and therefore only yields bounds to the true free energy difference.
arXiv Detail & Related papers (2024-08-24T01:01:50Z) - On the evolution of expected values in open quantum systems [44.99833362998488]
We identify three factors contributing to the evolution of expected values.
In some cases, the non-thermal contributions to the energy rate of change can be expressed as the expected value of a Hermitian operator.
arXiv Detail & Related papers (2024-02-29T06:47:28Z) - Constraining work fluctuations of non-Hermitian dynamics across the
exceptional point of a superconducting qubit [0.31747404144117775]
We show that fluctuations in a non-Hermitian qubit obey the Jarzynski equality even if its Hamiltonian has complex or purely imaginary eigenvalues.
Our results provide the recipe for investigating the non-equilibrium quantum thermodynamics of such open systems.
arXiv Detail & Related papers (2023-09-21T18:00:03Z) - Fluctuation theorems for genuine quantum mechanical regimes [0.0]
We look for corrections to work fluctuations theorems when the acting system is allowed to enter the quantum domain.
For some specific processes, we derive several fluctuation theorems within both the quantum and classical statistical arenas.
arXiv Detail & Related papers (2022-11-29T13:14:30Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Joint quantum-classical Hamilton variation principle in the phase space [0.0]
We show that the dynamics of a closed quantum system obeys the Hamilton variation principle.
By introducing the classical counterpart of the Husimi representation in a close analogy to the Koopman-von Neumann theory, one can largely unify the formulations of classical and quantum dynamics.
arXiv Detail & Related papers (2021-11-15T06:38:08Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.