Work Statistics and Quantum Trajectories: No-Click Limit and non-Hermitian Hamiltonians
- URL: http://arxiv.org/abs/2504.11664v2
- Date: Sat, 26 Apr 2025 16:32:18 GMT
- Title: Work Statistics and Quantum Trajectories: No-Click Limit and non-Hermitian Hamiltonians
- Authors: Manali Malakar, Alessandro Silva,
- Abstract summary: We present a framework for quantum work statistics in continuously monitored quantum systems.<n>Our approach naturally incorporates non-Hermitian dynamics arising from quantum jump processes.<n>We illustrate our theoretical framework by analyzing a one-dimensional transverse-field Ising model under local spin monitoring.
- Score: 50.24983453990065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a generalized framework for quantum work statistics in continuously monitored quantum systems that extends the conventional two-point measurement scheme to include the effects of multiple generalized measurements and post-selection of no-click trajectories. By deriving a modified generating function for work, our approach naturally incorporates non-Hermitian dynamics arising from quantum jump processes and reveals deviations from the standard Jarzynski equality due to measurement-induced asymmetries. We illustrate our theoretical framework by analyzing a one-dimensional transverse-field Ising model under local spin monitoring. In this model, increased measurement strength projects the system onto the no-click state, leading to a suppression of energy fluctuations and measurement-induced energy saturation, reminiscent of the quantum Zeno effect.
Related papers
- Revising the quantum work fluctuation framework to encompass energy conservation [0.0]
We introduce a genuinely quantum, positive correction to the Jarzynski equality stemming from imposing energy conservation.
We construct modified two-point measurement schemes for work that ensure energy conservation for coherent quantum states.
arXiv Detail & Related papers (2024-06-26T18:00:00Z) - Designing open quantum systems with known steady states: Davies generators and beyond [0.9903198600681908]
We provide a systematic framework for constructing generic models of nonequilibrium quantum dynamics with a target stationary (mixed) state.<n>We focus on Gibbs states of stabilizer Hamiltonians, identifying local Lindbladians compatible therewith by constraining the rates of dissipative and unitary processes.<n>Our methods also reveal new models of quantum dynamics: for example, we provide a "measurement-induced phase transition" in which measurable two-point functions exhibit critical (power-law) scaling with distance at a critical ratio of the transverse field and rate of measurement and feedback.
arXiv Detail & Related papers (2024-04-22T19:21:34Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance
Transition [0.0]
We show that for a many-body system evolving under competing unitary evolution and variable-strength measurements the onset of the Zeno effect takes the form of a sharp phase transition.
We show that this transition is invisible to the average dynamics, but encoded in the rare fluctuations of the measurement process.
arXiv Detail & Related papers (2020-11-23T18:49:47Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.