論文の概要: The Zero Resource Speech Challenge 2020: Discovering discrete subword
and word units
- arxiv url: http://arxiv.org/abs/2010.05967v1
- Date: Mon, 12 Oct 2020 18:56:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 05:37:39.391340
- Title: The Zero Resource Speech Challenge 2020: Discovering discrete subword
and word units
- Title(参考訳): ゼロ・リソース・スピーチ・チャレンジ2020:個別のサブワードとワード・ユニットの発見
- Authors: Ewan Dunbar and Julien Karadayi and Mathieu Bernard and Xuan-Nga Cao
and Robin Algayres and Lucas Ondel and Laurent Besacier and Sakriani Sakti
and Emmanuel Dupoux
- Abstract要約: Zero Resource Speech Challenge 2020は、ラベルなしで生の音声信号から音声表現を学ぶことを目的としている。
提案した20のモデルの結果を提示し、教師なし音声学習における主な研究結果の意義について考察する。
- 参考スコア(独自算出の注目度): 40.41406551797358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the Zero Resource Speech Challenge 2020, which aims at learning
speech representations from raw audio signals without any labels. It combines
the data sets and metrics from two previous benchmarks (2017 and 2019) and
features two tasks which tap into two levels of speech representation. The
first task is to discover low bit-rate subword representations that optimize
the quality of speech synthesis; the second one is to discover word-like units
from unsegmented raw speech. We present the results of the twenty submitted
models and discuss the implications of the main findings for unsupervised
speech learning.
- Abstract(参考訳): ラベルなしで生音声信号から音声表現を学習することを目的としたZero Resource Speech Challenge 2020を紹介する。
以前の2つのベンチマーク(2017年と2019年)のデータセットとメトリクスを組み合わせて、2つのレベルの音声表現をタップする2つのタスクを特徴とする。
第1の課題は、音声合成の質を最適化する低ビットレートのサブワード表現を見つけることであり、第2の課題は、未分類の生音声から単語のような単位を発見することである。
提案20モデルの結果を提示し,教師なし音声学習における主結果の意義について考察する。
関連論文リスト
- Exploring Speech Recognition, Translation, and Understanding with
Discrete Speech Units: A Comparative Study [68.88536866933038]
音声信号は、通常、毎秒数万のレートでサンプリングされ、冗長性を含んでいる。
近年の研究では、自己教師型学習表現から派生した離散音声単位の使用が提案されている。
復号化やサブワードモデリングなどの様々な手法を適用することで、さらに音声列の長さを圧縮することができる。
論文 参考訳(メタデータ) (2023-09-27T17:21:13Z) - Representation Learning With Hidden Unit Clustering For Low Resource
Speech Applications [37.89857769906568]
本稿では,隠れ単位クラスタリング(HUC)フレームワークを用いた生音声からの自己教師付き表現学習のアプローチについて述べる。
モデルへの入力は、ウィンドウ化され、1次元畳み込み層で処理されるオーディオサンプルで構成されている。
HUCフレームワークは、表現を少数の音素のような単位に分類することができ、意味的に豊かな表現を学ぶためのモデルを訓練するために使用される。
論文 参考訳(メタデータ) (2023-07-14T13:02:10Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
音声言語理解(SLU)タスクは、音声研究コミュニティで何十年にもわたって研究されてきた。
SLUタスクベンチマークはそれほど多くはなく、既存のベンチマークの多くは、すべての研究者が自由に利用できないデータを使っている。
最近の研究は、いくつかのタスクにそのようなベンチマークを導入し始めている。
論文 参考訳(メタデータ) (2022-12-20T18:39:59Z) - The Ability of Self-Supervised Speech Models for Audio Representations [53.19715501273934]
自己教師付き学習(SSL)音声モデルは、音声表現学習において前例のない成功を収めた。
我々は、最先端のSSL音声モデルの表現能力を評価するために、豊富な音声および非音声音声データセットに関する広範な実験を行う。
結果から、SSL音声モデルは幅広い非音声音声の有意義な特徴を抽出できるが、特定の種類のデータセットではフェールする可能性があることが示された。
論文 参考訳(メタデータ) (2022-09-26T15:21:06Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z) - The Interspeech Zero Resource Speech Challenge 2021: Spoken language
modelling [19.525392906001624]
本稿では,テキストやラベルを使わずに,音声から直接言語モデルを学ぶよう参加者に求めるゼロリソース音声チャレンジ2021を紹介する。
課題はLibri-lightデータセットに基づいており、関連するテキストなしで英語のオーディオブックから最大60k時間のオーディオを提供します。
論文 参考訳(メタデータ) (2021-04-29T23:53:37Z) - Generative Spoken Language Modeling from Raw Audio [42.153136032037175]
生成音声言語モデリングは、(テキストやラベルなしで)生音声のみから、言語の音響的特徴と言語的特徴を共同で学習することを伴う
本稿では,2つのエンドツーエンドタスクの音響的品質と言語的品質の観点から,生成した出力を自動的に評価する指標を提案する。
我々は、離散音声エンコーダ(離散音声単位を返却する)、生成言語モデル(擬似テキスト単位で学習する)、音声デコーダからなるベースラインシステムをテストする。
論文 参考訳(メタデータ) (2021-02-01T21:41:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。