A catalog of broad morphology of Pan-STARRS galaxies based on deep
learning
- URL: http://arxiv.org/abs/2010.06073v1
- Date: Mon, 12 Oct 2020 23:20:35 GMT
- Title: A catalog of broad morphology of Pan-STARRS galaxies based on deep
learning
- Authors: Hunter Goddard, Lior Shamir
- Abstract summary: We describe the design and implementation of a data analysis process for automatic broad morphology annotation of galaxies.
The process is based on filters followed by a two-step convolutional neural network (CNN) classification.
Results are evaluated for accuracy by comparison to the annotation of Pan-STARRS galaxies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous digital sky surveys such as Pan-STARRS have the ability to image a
very large number of galactic and extra-galactic objects, and the large and
complex nature of the image data reinforces the use of automation. Here we
describe the design and implementation of a data analysis process for automatic
broad morphology annotation of galaxies, and applied it to the data of
Pan-STARRS DR1. The process is based on filters followed by a two-step
convolutional neural network (CNN) classification. Training samples are
generated by using an augmented and balanced set of manually classified
galaxies. Results are evaluated for accuracy by comparison to the annotation of
Pan-STARRS included in a previous broad morphology catalog of SDSS galaxies.
Our analysis shows that a CNN combined with several filters is an effective
approach for annotating the galaxies and removing unclean images. The catalog
contains morphology labels for 1,662,190 galaxies with ~95% accuracy. The
accuracy can be further improved by selecting labels above certain confidence
thresholds. The catalog is publicly available.
Related papers
- Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - Galaxy Classification: A machine learning approach for classifying
shapes using numerical data [0.0]
We present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo project.
Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.
arXiv Detail & Related papers (2023-11-30T20:47:16Z) - Spiral-Elliptical automated galaxy morphology classification from
telescope images [0.40792653193642503]
We develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images.
We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics.
arXiv Detail & Related papers (2023-10-10T22:36:52Z) - Cosmology from Galaxy Redshift Surveys with PointNet [65.89809800010927]
In cosmology, galaxy redshift surveys resemble such a permutation invariant collection of positions in space.
We employ a textitPointNet-like neural network to regress the values of the cosmological parameters directly from point cloud data.
Our implementation of PointNets can analyse inputs of $mathcalO(104) - mathcalO(105)$ galaxies at a time, which improves upon earlier work for this application by roughly two orders of magnitude.
arXiv Detail & Related papers (2022-11-22T15:35:05Z) - Photometric identification of compact galaxies, stars and quasars using
multiple neural networks [0.9894420655516565]
MargNet is a deep learning-based classifier for identifying stars, quasars and compact galaxies.
It learns classification directly from the data, minimising the need for human intervention.
MargNet is the first classifier focusing exclusively on compact galaxies.
arXiv Detail & Related papers (2022-11-15T18:37:04Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Self Supervised Learning for Few Shot Hyperspectral Image Classification [57.2348804884321]
We propose to leverage Self Supervised Learning (SSL) for HSI classification.
We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels.
arXiv Detail & Related papers (2022-06-24T07:21:53Z) - Morphological Classification of Galaxies in S-PLUS using an Ensemble of
Convolutional Networks [0.0]
We combine accurate visual classifications of the Galaxy Zoo project with emph Deep Learning methods.
A neural network model was created through an Ensemble of four other convolutional models, allowing a greater accuracy in the classification than what would be obtained with any one individual.
arXiv Detail & Related papers (2021-07-05T21:51:19Z) - Morphological classification of astronomical images with limited
labelling [0.0]
We propose an effective semi-supervised approach for galaxy morphology classification task, based on active learning of adversarial autoencoder (AAE) model.
For a binary classification problem (top level question of Galaxy Zoo 2 decision tree) we achieved accuracy 93.1% on the test part with only 0.86 millions markup actions.
Our best model with additional markup accuracy of 95.5%.
arXiv Detail & Related papers (2021-04-27T19:26:27Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.