Morphological classification of astronomical images with limited
labelling
- URL: http://arxiv.org/abs/2105.02958v1
- Date: Tue, 27 Apr 2021 19:26:27 GMT
- Title: Morphological classification of astronomical images with limited
labelling
- Authors: Andrey Soroka (1), Alex Meshcheryakov (2), Sergey Gerasimov (1) ((1)
Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State
University, (2) Space Research Institute of RAS)
- Abstract summary: We propose an effective semi-supervised approach for galaxy morphology classification task, based on active learning of adversarial autoencoder (AAE) model.
For a binary classification problem (top level question of Galaxy Zoo 2 decision tree) we achieved accuracy 93.1% on the test part with only 0.86 millions markup actions.
Our best model with additional markup accuracy of 95.5%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of morphological classification is complex for simple
parameterization, but important for research in the galaxy evolution field.
Future galaxy surveys (e.g. EUCLID) will collect data about more than a $10^9$
galaxies. To obtain morphological information one needs to involve people to
mark up galaxy images, which requires either a considerable amount of money or
a huge number of volunteers. We propose an effective semi-supervised approach
for galaxy morphology classification task, based on active learning of
adversarial autoencoder (AAE) model. For a binary classification problem (top
level question of Galaxy Zoo 2 decision tree) we achieved accuracy 93.1% on the
test part with only 0.86 millions markup actions, this model can easily scale
up on any number of images. Our best model with additional markup achieves
accuracy of 95.5%. To the best of our knowledge it is a first time AAE
semi-supervised learning model used in astronomy.
Related papers
- A Versatile Framework for Analyzing Galaxy Image Data by Implanting Human-in-the-loop on a Large Vision Model [14.609681101463334]
We present a framework for general analysis of galaxy images based on a large vision model (LVM) plus downstream tasks (DST)
Considering the low signal-to-noise ratio of galaxy images, we have incorporated a Human-in-the-loop (HITL) module into our large vision model.
For object detection, trained by 1000 data points, our DST upon the LVM achieves an accuracy of 96.7%, while ResNet50 plus Mask R-CNN gives an accuracy of 93.1%.
arXiv Detail & Related papers (2024-05-17T16:29:27Z) - Galaxy Classification: A machine learning approach for classifying
shapes using numerical data [0.0]
We present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo project.
Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.
arXiv Detail & Related papers (2023-11-30T20:47:16Z) - Spiral-Elliptical automated galaxy morphology classification from
telescope images [0.40792653193642503]
We develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images.
We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics.
arXiv Detail & Related papers (2023-10-10T22:36:52Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Self Supervised Learning for Few Shot Hyperspectral Image Classification [57.2348804884321]
We propose to leverage Self Supervised Learning (SSL) for HSI classification.
We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels.
arXiv Detail & Related papers (2022-06-24T07:21:53Z) - Practical Galaxy Morphology Tools from Deep Supervised Representation
Learning [0.0]
We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies.
We exploit these representations to outperform existing approaches at several practical tasks crucial for investigating large galaxy samples.
arXiv Detail & Related papers (2021-10-25T08:46:16Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - A catalog of broad morphology of Pan-STARRS galaxies based on deep
learning [0.0]
We describe the design and implementation of a data analysis process for automatic broad morphology annotation of galaxies.
The process is based on filters followed by a two-step convolutional neural network (CNN) classification.
Results are evaluated for accuracy by comparison to the annotation of Pan-STARRS galaxies.
arXiv Detail & Related papers (2020-10-12T23:20:35Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.