論文の概要: Coarse and fine-grained automatic cropping deep convolutional neural
network
- arxiv url: http://arxiv.org/abs/2010.06379v2
- Date: Wed, 14 Oct 2020 02:42:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 22:36:17.997261
- Title: Coarse and fine-grained automatic cropping deep convolutional neural
network
- Title(参考訳): 粗粒度及び細粒度自動クロッピング深層畳み込みニューラルネットワーク
- Authors: Jingfei Chang
- Abstract要約: 本稿では,粗くきめ細かな自動刈取アルゴリズムを提案する。
畳み込みニューラルネットワークのより効率的で正確な圧縮加速を実現することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing convolutional neural network pruning algorithms can be divided
into two categories: coarse-grained clipping and fine-grained clipping. This
paper proposes a coarse and fine-grained automatic pruning algorithm, which can
achieve more efficient and accurate compression acceleration for convolutional
neural networks. First, cluster the intermediate feature maps of the
convolutional neural network to obtain the network structure after
coarse-grained clipping, and then use the particle swarm optimization algorithm
to iteratively search and optimize the structure. Finally, the optimal network
tailoring substructure is obtained.
- Abstract(参考訳): 既存の畳み込みニューラルネットワークプルーニングアルゴリズムは、粗粒クリッピングと細粒クリッピングの2つのカテゴリに分類できる。
本稿では,畳み込みニューラルネットワークのより効率的かつ高精度な圧縮高速化を実現する,粗くきめ細かな自動刈取アルゴリズムを提案する。
まず、畳み込みニューラルネットワークの中間特徴マップをクラスタ化して、粗い切り込み後にネットワーク構造を取得し、次に、粒子群最適化アルゴリズムを用いて構造を反復的に探索し、最適化する。
最後に、最適なネットワーク調整サブ構造を得る。
関連論文リスト
- Automatic Optimisation of Normalised Neural Networks [1.0334138809056097]
ニューラルネットワークの正規化パラメータに対する行列多様体の幾何を考慮した自動最適化手法を提案する。
我々の手法はまずネットワークを初期化し、初期化ネットワークの$ell2$-$ell2$ゲインに関してデータを正規化する。
論文 参考訳(メタデータ) (2023-12-17T10:13:42Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
畳み込みニューラルネットワーク(CNN)は、ディープラーニングアルゴリズムの代表クラスである。
テキストCNNニューラルネットワークに基づくテキスト分類タスクのためのSA-CNNニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T14:27:34Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - AutoPruning for Deep Neural Network with Dynamic Channel Masking [28.018077874687343]
深層ニューラルネットワークのための学習に基づくオートプルーニングアルゴリズムを提案する。
まず、各層に対する重みと最良チャネルを目的とする2つの目的の問題を定式化する。
次に、最適なチャネル数と重みを同時に導出するために、別の最適化手法を提案する。
論文 参考訳(メタデータ) (2020-10-22T20:12:46Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - RicciNets: Curvature-guided Pruning of High-performance Neural Networks
Using Ricci Flow [0.0]
計算グラフをニューラルネットワークにマッピングする前に、Ricci曲率の定義を用いて、重要度の低いエッジを除去する。
1パスあたりの浮動小数点演算数(FLOP)が約35%削減されるが、性能は低下しない。
論文 参考訳(メタデータ) (2020-07-08T15:56:02Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
コーン制約のある凸最適化プログラムを解くことにより,グローバルな2層ReLUニューラルネットワークの探索が可能であることを示す。
我々の分析は新しく、全ての最適解を特徴づけ、最近、ニューラルネットワークのトレーニングを凸空間に持ち上げるために使われた双対性に基づく分析を活用できない。
論文 参考訳(メタデータ) (2020-06-10T15:38:30Z) - DHP: Differentiable Meta Pruning via HyperNetworks [158.69345612783198]
本稿では,ネットワークの自動プルーニングのためのハイパーネットによる識別可能なプルーニング手法を提案する。
遅延ベクトルは、バックボーンネットワーク内の畳み込み層の出力チャネルを制御し、レイヤのプルーニングのハンドルとして機能する。
画像分類、単一画像超解像、復調のための様々なネットワークで実験が行われた。
論文 参考訳(メタデータ) (2020-03-30T17:59:18Z) - Approximation smooth and sparse functions by deep neural networks
without saturation [0.6396288020763143]
本稿では,スムーズかつスパースな関数を近似するために,3つの層を隠蔽したディープニューラルネットワークを構築することを目的とする。
構成したディープネットは, 滑らかかつスパースな関数を制御可能な自由パラメータで近似することで, 最適近似率に達することを証明した。
論文 参考訳(メタデータ) (2020-01-13T09:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。