Temporal Collaborative Filtering with Graph Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2010.06425v1
- Date: Tue, 13 Oct 2020 14:38:40 GMT
- Title: Temporal Collaborative Filtering with Graph Convolutional Neural
Networks
- Authors: Esther Rodrigo Bonet, Duc Minh Nguyen and Nikos Deligiannis
- Abstract summary: Temporal collaborative filtering (TCF) methods aim at modelling non-static aspects behind recommender systems.
Recent graph-neural-network-based (GNN-based) approaches have shown improved performance in providing accurate recommendations.
We propose a novel TCF method that leverages GNNs to learn user and item representations, and RNNs to model their temporal dynamics.
- Score: 21.75176876341124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal collaborative filtering (TCF) methods aim at modelling non-static
aspects behind recommender systems, such as the dynamics in users' preferences
and social trends around items. State-of-the-art TCF methods employ recurrent
neural networks (RNNs) to model such aspects. These methods deploy
matrix-factorization-based (MF-based) approaches to learn the user and item
representations. Recently, graph-neural-network-based (GNN-based) approaches
have shown improved performance in providing accurate recommendations over
traditional MF-based approaches in non-temporal CF settings. Motivated by this,
we propose a novel TCF method that leverages GNNs to learn user and item
representations, and RNNs to model their temporal dynamics. A challenge with
this method lies in the increased data sparsity, which negatively impacts
obtaining meaningful quality representations with GNNs. To overcome this
challenge, we train a GNN model at each time step using a set of observed
interactions accumulated time-wise. Comprehensive experiments on real-world
data show the improved performance obtained by our method over several
state-of-the-art temporal and non-temporal CF models.
Related papers
- Post-Hoc Robustness Enhancement in Graph Neural Networks with Conditional Random Fields [19.701706244728037]
Graph Neural Networks (GNNs) have been shown to be vulnerable to adversarial attacks.
This study introduces RobustCRF, a post-hoc approach aiming to enhance the robustness of GNNs at the inference stage.
arXiv Detail & Related papers (2024-11-08T08:26:42Z) - AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks [24.323017830938394]
This work aims to address challenges by introducing a pre-training framework that seamlessly integrates with baselines and enhances their performance.
The framework is built upon two key designs: (i) We propose a.
apple-to-apple mask autoencoder as a pre-training model for learning-temporal dependencies.
These modules are specifically designed to capture intra-temporal customized representations and semantic- and inter-cluster relationships.
arXiv Detail & Related papers (2023-11-07T02:36:24Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack [6.243453526766042]
We propose an efficient method called TSFool to craft highly-imperceptible adversarial time series for RNN-based TSC.
The core idea is a new global optimization objective known as "Camouflage Coefficient" that captures the imperceptibility of adversarial samples from the class distribution.
Experiments on 11 UCR and UEA datasets showcase that TSFool significantly outperforms six white-box and three black-box benchmark attacks.
arXiv Detail & Related papers (2022-09-14T03:02:22Z) - MGDCF: Distance Learning via Markov Graph Diffusion for Neural
Collaborative Filtering [96.65234340724237]
We show the equivalence between some state-of-the-art GNN-based CF models and a traditional 1-layer NRL model based on context encoding.
We present Markov Graph Diffusion Collaborative Filtering (MGDCF) to generalize some state-of-the-art GNN-based CF models.
arXiv Detail & Related papers (2022-04-05T17:24:32Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z) - Object-Adaptive LSTM Network for Real-time Visual Tracking with
Adversarial Data Augmentation [31.842910084312265]
We propose a novel real-time visual tracking method, which adopts an object-adaptive LSTM network to effectively capture the video sequential dependencies and adaptively learn the object appearance variations.
Experiments on four visual tracking benchmarks demonstrate the state-of-the-art performance of our method in terms of both tracking accuracy and speed.
arXiv Detail & Related papers (2020-02-07T03:06:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.