Credit card fraud detection using machine learning: A survey
- URL: http://arxiv.org/abs/2010.06479v1
- Date: Tue, 13 Oct 2020 15:35:32 GMT
- Title: Credit card fraud detection using machine learning: A survey
- Authors: Yvan Lucas, Johannes Jurgovsky
- Abstract summary: We study data-driven credit card fraud detection particularities and several machine learning methods to address each of its intricate challenges.
In particular, we first characterize a typical credit card detection task: the dataset and its attributes, the metric choice along with some methods to handle such unbalanced datasets.
- Score: 0.5134435281973136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Credit card fraud has emerged as major problem in the electronic payment
sector. In this survey, we study data-driven credit card fraud detection
particularities and several machine learning methods to address each of its
intricate challenges with the goal to identify fraudulent transactions that
have been issued illegitimately on behalf of the rightful card owner. In
particular, we first characterize a typical credit card detection task: the
dataset and its attributes, the metric choice along with some methods to handle
such unbalanced datasets. These questions are the entry point of every credit
card fraud detection problem. Then we focus on dataset shift (sometimes called
concept drift), which refers to the fact that the underlying distribution
generating the dataset evolves over times: For example, card holders may change
their buying habits over seasons and fraudsters may adapt their strategies.
This phenomenon may hinder the usage of machine learning methods for real world
datasets such as credit card transactions datasets. Afterwards we highlights
different approaches used in order to capture the sequential properties of
credit card transactions. These approaches range from feature engineering
techniques (transactions aggregations for example) to proper sequence modeling
methods such as recurrent neural networks (LSTM) or graphical models (hidden
markov models).
Related papers
- A Simple Baseline for Predicting Events with Auto-Regressive Tabular Transformers [70.20477771578824]
Existing approaches to event prediction include time-aware positional embeddings, learned row and field encodings, and oversampling methods for addressing class imbalance.
We propose a simple but flexible baseline using standard autoregressive LLM-style transformers with elementary positional embeddings and a causal language modeling objective.
Our baseline outperforms existing approaches across popular datasets and can be employed for various use-cases.
arXiv Detail & Related papers (2024-10-14T15:59:16Z) - Credit Card Fraud Detection: A Deep Learning Approach [4.0361765428523135]
Substantial amount of money has been lost by many institutions and individuals due to fraudulent credit card transactions.
This paper aims to understand & implement Deep Learning algorithms in order to obtain a high fraud coverage with very low false positive rate.
arXiv Detail & Related papers (2024-09-20T11:13:16Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Credit Card Fraud Detection Using Enhanced Random Forest Classifier for
Imbalanced Data [0.8223798883838329]
This paper implements the random forest (RF) algorithm to solve the issue in the hand.
A dataset of credit card transactions was used in this study.
arXiv Detail & Related papers (2023-03-11T22:59:37Z) - Credit card fraud detection - Classifier selection strategy [0.0]
Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds.
fraud data sets are diverse and exhibit inconsistent characteristics.
We propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets.
arXiv Detail & Related papers (2022-08-25T07:13:42Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
We review the effectiveness of a feature-level fusion of super-app customer information, mobile phone line data, and traditional credit risk variables for the early detection of identity theft credit card fraud.
We evaluate our approach over approximately 90,000 users from a credit lender's digital platform database.
arXiv Detail & Related papers (2021-11-05T19:10:35Z) - Credit Card Fraud Detection using Machine Learning: A Study [2.5829043503611318]
The world is rapidly moving towards digitization and money transactions are becoming cashless.
We need to analyze and detect the fraudulent transaction from the non-fraudulent ones.
We present a comprehensive review of various methods used to detect credit card fraud.
arXiv Detail & Related papers (2021-08-23T08:30:24Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Deep Learning Methods for Credit Card Fraud Detection [3.069837038535869]
This paper presents a study of deep learning methods for the credit card fraud detection problem.
It compares their performance with various machine learning algorithms on three different financial datasets.
Experimental results show great performance of the proposed deep learning methods against traditional machine learning models.
arXiv Detail & Related papers (2020-12-07T14:48:58Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.