論文の概要: Deep Learning for Recognizing Mobile Targets in Satellite Imagery
- arxiv url: http://arxiv.org/abs/2010.06520v1
- Date: Tue, 13 Oct 2020 16:26:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 00:15:35.692387
- Title: Deep Learning for Recognizing Mobile Targets in Satellite Imagery
- Title(参考訳): 衛星画像における移動目標認識のための深層学習
- Authors: Mark Pritt
- Abstract要約: 本稿では,畳み込み型ニューラルネットワーク(CNN)を用いて,スライディングウインドウアルゴリズムに分類する手法について述べる。
xViewデータセットのモバイルターゲット上で評価され、95%以上の検出と分類の精度を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an increasing demand for software that automatically detects and
classifies mobile targets such as airplanes, cars, and ships in satellite
imagery. Applications of such automated target recognition (ATR) software
include economic forecasting, traffic planning, maritime law enforcement, and
disaster response. This paper describes the extension of a convolutional neural
network (CNN) for classification to a sliding window algorithm for detection.
It is evaluated on mobile targets of the xView dataset, on which it achieves
detection and classification accuracies higher than 95%.
- Abstract(参考訳): 衛星画像中の航空機、車、船舶などの移動目標を自動的に検知し分類するソフトウェアに対する需要が高まっている。
このような自動目標認識(atr)ソフトウェアの応用には、経済予測、交通計画、海上法執行、災害対応などがある。
本稿では,畳み込み型ニューラルネットワーク(CNN)を用いて,スライディングウインドウアルゴリズムに分類する手法について述べる。
xViewデータセットのモバイルターゲット上で評価され、95%以上の検出と分類の精度を達成する。
関連論文リスト
- A Hybrid Quantum-Classical AI-Based Detection Strategy for Generative Adversarial Network-Based Deepfake Attacks on an Autonomous Vehicle Traffic Sign Classification System [2.962613983209398]
著者らは、AV信号の分類システムを騙すために、生成的敵ネットワークベースのディープフェイク攻撃をいかに構築できるかを提示する。
彼らは、ハイブリッド量子古典ニューラルネットワーク(NN)を活用したディープフェイクトラフィックサイン画像検出戦略を開発した。
その結果、ディープフェイク検出のためのハイブリッド量子古典的NNは、ほとんどの場合、ベースラインの古典的畳み込みNNと似た、あるいは高い性能が得られることが示唆された。
論文 参考訳(メタデータ) (2024-09-25T19:44:56Z) - Improved LiDAR Odometry and Mapping using Deep Semantic Segmentation and
Novel Outliers Detection [1.0334138809056097]
高速移動プラットフォームのためのLOAMアーキテクチャに基づくリアルタイムLiDARオドメトリーとマッピングのための新しいフレームワークを提案する。
本フレームワークは,ディープラーニングモデルによって生成された意味情報を用いて,ポイント・ツー・ラインとポイント・ツー・プレーンのマッチングを改善する。
高速動作に対するLiDARオドメトリーのロバスト性に及ぼすマッチング処理の改善効果について検討した。
論文 参考訳(メタデータ) (2024-03-05T16:53:24Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
本稿では,カメラと機械学習アルゴリズムを組み合わせることで,相対的なナビゲーションを実現する方法について論じる。
高速領域ベース畳み込みニューラルネットワーク(R-CNN)とYou Only Look Once(YOLOv5)の2つのディープラーニングに基づくオブジェクト検出アルゴリズムの性能を検証した。
本稿では, 特徴認識アルゴリズムの実装と, 宇宙船誘導航法制御システムへの統合に向けての道筋について論じる。
論文 参考訳(メタデータ) (2023-01-22T04:53:38Z) - Deep learning approach for interruption attacks detection in LEO
satellite networks [0.0]
本研究の目的は、深層学習アルゴリズムを用いた低地球軌道(textsfLEO)衛星ネットワークの割り込み検出戦略を提供することである。
我々は、MLP(Multi Layer Perceptron)、CNN(Convolutional Neural Network)、RNN(Recurrent Neural Network)、Gated Recurrent Units(GRU)など、さまざまなディープラーニングアルゴリズムをテストする。
論文 参考訳(メタデータ) (2022-12-10T21:21:14Z) - Construction of Object Boundaries for the Autopilotof a Surface Robot
from Satellite Imagesusing Computer Vision Methods [101.18253437732933]
衛星地図上での水物体を検出する手法を提案する。
輪郭のGPS座標を計算するアルゴリズムを作成する。
提案アルゴリズムは,表面ロボットオートパイロットモジュールに適したフォーマットで結果の保存を可能にする。
論文 参考訳(メタデータ) (2022-12-05T12:07:40Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Monocular Vision-based Prediction of Cut-in Maneuvers with LSTM Networks [0.0]
本研究では,エゴレーンで発生する潜在的に危険なカットイン動作を予測する手法を提案する。
我々は、1台の車載RGBカメラのみを使用するコンピュータビジョンベースのアプローチに従う。
本アルゴリズムは,CNNに基づく車両検出・追跡ステップとLSTMに基づく操縦分類ステップから構成される。
論文 参考訳(メタデータ) (2022-03-21T02:30:36Z) - Scale-aware Automatic Augmentation for Object Detection [63.087930708444695]
オブジェクト検出のためのデータ拡張ポリシーを学ぶために,Scale-aware AutoAugを提案する。
実験では、Scale-aware AutoAugはさまざまな物体検出器に有意で一貫した改善をもたらす。
論文 参考訳(メタデータ) (2021-03-31T17:11:14Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。