論文の概要: A Hybrid Quantum-Classical AI-Based Detection Strategy for Generative Adversarial Network-Based Deepfake Attacks on an Autonomous Vehicle Traffic Sign Classification System
- arxiv url: http://arxiv.org/abs/2409.17311v1
- Date: Wed, 25 Sep 2024 19:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-30 12:41:44.035831
- Title: A Hybrid Quantum-Classical AI-Based Detection Strategy for Generative Adversarial Network-Based Deepfake Attacks on an Autonomous Vehicle Traffic Sign Classification System
- Title(参考訳): ハイブリッド量子古典型AIによる自動車交通信号分類システムにおける逆方向ネットワークに基づくディープフェイク攻撃の検出方法
- Authors: M Sabbir Salek, Shaozhi Li, Mashrur Chowdhury,
- Abstract要約: 著者らは、AV信号の分類システムを騙すために、生成的敵ネットワークベースのディープフェイク攻撃をいかに構築できるかを提示する。
彼らは、ハイブリッド量子古典ニューラルネットワーク(NN)を活用したディープフェイクトラフィックサイン画像検出戦略を開発した。
その結果、ディープフェイク検出のためのハイブリッド量子古典的NNは、ほとんどの場合、ベースラインの古典的畳み込みNNと似た、あるいは高い性能が得られることが示唆された。
- 参考スコア(独自算出の注目度): 2.962613983209398
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The perception module in autonomous vehicles (AVs) relies heavily on deep learning-based models to detect and identify various objects in their surrounding environment. An AV traffic sign classification system is integral to this module, which helps AVs recognize roadway traffic signs. However, adversarial attacks, in which an attacker modifies or alters the image captured for traffic sign recognition, could lead an AV to misrecognize the traffic signs and cause hazardous consequences. Deepfake presents itself as a promising technology to be used for such adversarial attacks, in which a deepfake traffic sign would replace a real-world traffic sign image before the image is fed to the AV traffic sign classification system. In this study, the authors present how a generative adversarial network-based deepfake attack can be crafted to fool the AV traffic sign classification systems. The authors developed a deepfake traffic sign image detection strategy leveraging hybrid quantum-classical neural networks (NNs). This hybrid approach utilizes amplitude encoding to represent the features of an input traffic sign image using quantum states, which substantially reduces the memory requirement compared to its classical counterparts. The authors evaluated this hybrid deepfake detection approach along with several baseline classical convolutional NNs on real-world and deepfake traffic sign images. The results indicate that the hybrid quantum-classical NNs for deepfake detection could achieve similar or higher performance than the baseline classical convolutional NNs in most cases while requiring less than one-third of the memory required by the shallowest classical convolutional NN considered in this study.
- Abstract(参考訳): 自動運転車(AV)の知覚モジュールは、周囲の環境における様々な物体を検出し識別するために、ディープラーニングベースのモデルに大きく依存している。
AVの交通標識分類システムは、AVが道路交通標識を認識するのに役立つこのモジュールに不可欠なものである。
しかし、攻撃者が交通標識認識のために捉えた画像を修正または変更する敵攻撃は、AVに交通標識を誤認識させ、有害な結果を引き起こす可能性がある。
ディープフェイクは、画像がAV信号分類システムに送られる前に、ディープフェイクの交通標識が現実世界の交通標識画像を置き換えるような、このような敵攻撃に使用される有望な技術である。
本研究では,AVトラヒックの分類システムを騙すために,生成的対向ネットワークに基づくディープフェイク攻撃をいかに行うかを示す。
筆者らは,ハイブリッド量子古典ニューラルネットワーク(NN)を利用したディープフェイク信号画像検出手法を開発した。
このハイブリッドアプローチでは、入力されたトラフィックサイン画像の特徴を量子状態を用いて表現するために振幅符号化を利用する。
筆者らは,このハイブリッドなディープフェイク検出手法と,実世界およびディープフェイク交通標識画像上でのいくつかの古典的畳み込みNNを評価した。
その結果、ディープフェイク検出のためのハイブリッド量子古典的NNは、ほとんどの場合、ベースラインの古典的畳み込みNNと同等または高い性能を達成できるが、この研究で考慮された最も浅い古典的畳み込みNNが要求するメモリの3分の1以下は必要であることがわかった。
関連論文リスト
- A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
本稿では,異常検出アルゴリズムの再現性,比較性,迅速な評価を可能にするアセスメントフレームワークを提案する。
実例検出機構を評価し,TSNトラフィックフローと異常型の組み合わせによって検出性能がどう影響するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:29:42Z) - Exploring Geometry of Blind Spots in Vision Models [56.47644447201878]
CNNやトランスフォーマーのような視覚モデルにおける過敏性の現象について検討する。
本稿では,入力空間に対する信頼度の高い領域を反復的に探索するレベルセットトラバースアルゴリズムを提案する。
モデルが高い信頼度を維持するこれらの連結高次元領域の範囲を推定する。
論文 参考訳(メタデータ) (2023-10-30T18:00:33Z) - Explainable and Trustworthy Traffic Sign Detection for Safe Autonomous
Driving: An Inductive Logic Programming Approach [0.0]
自動走行車における停止信号検出のためのILPに基づくアプローチを提案する。
それは人間のような知覚を模倣するため、敵の攻撃に対してより堅牢である。
PR2やADvCamの攻撃があっても、標的とするすべての停止標識を正しく識別することができる。
論文 参考訳(メタデータ) (2023-08-30T09:05:52Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - A Hybrid Defense Method against Adversarial Attacks on Traffic Sign
Classifiers in Autonomous Vehicles [4.585587646404074]
敵対的攻撃は、ディープニューラルネットワーク(DNN)モデルに、自動運転車(AV)の誤った出力ラベルを予測させる。
本研究では,ハイブリッドディフェンス方式を用いたAV用レジリエントトラフィックサイン分類器を開発した。
本手法は, 攻撃シナリオの平均交通標識分類精度が99%, 攻撃シナリオの平均交通標識分類精度が88%であることを示す。
論文 参考訳(メタデータ) (2022-04-25T02:13:31Z) - DeepHybrid: Deep Learning on Automotive Radar Spectra and Reflections
for Object Classification [0.5669790037378094]
本稿では,従来のレーダ信号処理とディープラーニングアルゴリズムを組み合わせた手法を提案する。
提案手法は, 自動緊急ブレーキや衝突回避システムの改善などに用いることができる。
論文 参考訳(メタデータ) (2022-02-17T08:45:11Z) - AVTPnet: Convolutional Autoencoder for AVTP anomaly detection in
Automotive Ethernet Networks [2.415997479508991]
本稿では,Audio Video Transport Protocol (AVTP) 上での異常のオフライン検出のための畳み込みオートエンコーダ (CAE) を提案する。
提案手法は、最近発表された"Automotive Ethernet Intrusion dataset"に基づいて評価される。
論文 参考訳(メタデータ) (2022-01-31T19:13:20Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。