An efficient finite-resource formulation of non-Abelian lattice gauge theories beyond one dimension
- URL: http://arxiv.org/abs/2409.04441v1
- Date: Fri, 6 Sep 2024 17:59:24 GMT
- Title: An efficient finite-resource formulation of non-Abelian lattice gauge theories beyond one dimension
- Authors: Pierpaolo Fontana, Marc Miranda Riaza, Alessio Celi,
- Abstract summary: We propose a resource-efficient method to compute the running of the coupling in non-Abelian gauge theories beyond one spatial dimension.
Our method enables computations at arbitrary values of the bare coupling and lattice spacing with current quantum computers, simulators and tensor-network calculations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Abelian gauge theories provide an accurate description of fundamental interactions, as both perturbation theory and quantum Monte Carlo computations in lattice gauge theory, it when applicable, show remarkable agreement with experimental data from particle colliders and cosmological observations. Complementing these computations, or combining them with quantum-inspired Hamiltonian lattice computations on quantum machines to improve continuum limit predictions with current quantum resources, is a formidable open challenge. Here, we propose a resource-efficient method to compute the running of the coupling in non-Abelian gauge theories beyond one spatial dimension. We first represent the Hamiltonian on periodic lattices in terms of loop variables and conjugate loop electric fields, exploiting the Gauss law to retain the gauge-independent ones. Then, we identify a local basis for small and large loops variationally to minimize the truncation error while computing the running of the coupling on small tori. Our method enables computations at arbitrary values of the bare coupling and lattice spacing with current quantum computers, simulators and tensor-network calculations, in regimes otherwise inaccessible.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Simulating $\mathbb{Z}_2$ lattice gauge theory on a quantum computer [0.0]
Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations.
We perform quantum simulations of $1d$ $mathbbZ$ gauge theory with matter to study the efficacy and interplay of different error mitigation methods.
arXiv Detail & Related papers (2023-05-03T18:01:02Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Overcoming exponential volume scaling in quantum simulations of lattice
gauge theories [1.5675763601034223]
We present a formulation of a compact U(1) gauge theory in 2+1 dimensions free of gauge redundancies.
A naive implementation onto a quantum circuit has a gate count that scales exponentially with the volume.
We discuss how to break this exponential scaling by performing an operator redefinition that reduces the non-locality of the Hamiltonian.
arXiv Detail & Related papers (2022-12-09T01:18:46Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Tensor lattice field theory with applications to the renormalization
group and quantum computing [0.0]
We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD.
We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums.
We derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers.
arXiv Detail & Related papers (2020-10-13T16:46:34Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - A resource efficient approach for quantum and classical simulations of
gauge theories in particle physics [0.0]
lattice gauge theory (LGT) calculations have been pivotal in our understanding of fundamental interactions.
Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation.
We provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation.
arXiv Detail & Related papers (2020-06-25T04:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.