LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and
Iterative Matching
- URL: http://arxiv.org/abs/2010.06668v2
- Date: Mon, 23 Nov 2020 22:42:54 GMT
- Title: LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and
Iterative Matching
- Authors: Qun Liu, Matthew Shreve, Raja Bala
- Abstract summary: LiDAM is a semi-supervised learning approach rooted in both domain adaptation and self-paced learning.
It achieves state-of-the-art performance on the CIFAR-100 dataset.
- Score: 19.606592939074737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although data is abundant, data labeling is expensive. Semi-supervised
learning methods combine a few labeled samples with a large corpus of unlabeled
data to effectively train models. This paper introduces our proposed method
LiDAM, a semi-supervised learning approach rooted in both domain adaptation and
self-paced learning. LiDAM first performs localized domain shifts to extract
better domain-invariant features for the model that results in more accurate
clusters and pseudo-labels. These pseudo-labels are then aligned with real
class labels in a self-paced fashion using a novel iterative matching technique
that is based on majority consistency over high-confidence predictions.
Simultaneously, a final classifier is trained to predict ground-truth labels
until convergence. LiDAM achieves state-of-the-art performance on the CIFAR-100
dataset, outperforming FixMatch (73.50% vs. 71.82%) when using 2500 labels.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Prompt-based Pseudo-labeling Strategy for Sample-Efficient Semi-Supervised Extractive Summarization [12.582774521907227]
Semi-supervised learning (SSL) is a widely used technique in scenarios where labeled data is scarce and unlabeled data is abundant.
Standard SSL methods follow a teacher-student paradigm to first train a classification model and then use the classifier's confidence values to select pseudo-labels.
We propose a prompt-based pseudo-labeling strategy with LLMs that picks unlabeled examples with more accurate pseudo-labels.
arXiv Detail & Related papers (2023-11-16T04:29:41Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data.
Existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation.
We propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning.
arXiv Detail & Related papers (2023-10-23T05:43:35Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning [46.95063831057502]
We propose emphFreeMatch to define and adjust the confidence threshold in a self-adaptive manner according to the model's learning status.
FreeMatch achieves textbf5.78%, textbf13.59%, and textbf1.28% error rate reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class.
arXiv Detail & Related papers (2022-05-15T10:07:52Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Weakly Supervised Pseudo-Label assisted Learning for ALS Point Cloud
Semantic Segmentation [1.4620086904601473]
Competitive point cloud results usually rely on a large amount of labeled data.
In this study, we propose a pseudo-labeling strategy to obtain accurate results with limited ground truth.
arXiv Detail & Related papers (2021-05-05T08:07:21Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
We consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm.
To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization.
Our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch.
arXiv Detail & Related papers (2021-03-03T05:46:39Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z) - FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence [93.91751021370638]
Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance.
In this paper, we demonstrate the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling.
Our algorithm, FixMatch, first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images.
arXiv Detail & Related papers (2020-01-21T18:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.