TriNE: Network Representation Learning for Tripartite Heterogeneous
Networks
- URL: http://arxiv.org/abs/2010.06816v1
- Date: Wed, 14 Oct 2020 05:30:09 GMT
- Title: TriNE: Network Representation Learning for Tripartite Heterogeneous
Networks
- Authors: Zhabiz Gharibshah, Xingquan Zhu
- Abstract summary: We develop a tripartite heterogeneous network embedding called TriNE.
The method considers unique user-item-tag tripartite relationships, to build an objective function to model explicit relationships between nodes.
Experiments on real-world tripartite networks validate the performance of TriNE for the online user response prediction.
- Score: 8.93957397187611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study network representation learning for tripartite
heterogeneous networks which learns node representation features for networks
with three types of node entities. We argue that tripartite networks are common
in real world applications, and the essential challenge of the representation
learning is the heterogeneous relations between various node types and links in
the network. To tackle the challenge, we develop a tripartite heterogeneous
network embedding called TriNE. The method considers unique user-item-tag
tripartite relationships, to build an objective function to model explicit
relationships between nodes (observed links), and also capture implicit
relationships between tripartite nodes (unobserved links across tripartite node
sets). The method organizes metapath guided random walks to create
heterogeneous neighborhood for all node types in the network. This information
is then utilized to train a heterogeneous skip-gram model based on a joint
optimization. Experiments on real-world tripartite networks validate the
performance of TriNE for the online user response prediction using embedding
node features.
Related papers
- Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
Graph neural networks (GNNs) have shown prominent performance on attributed network embedding.
We propose COllaborative graph Neural Networks--CONN, a tailored GNN architecture for network embedding.
arXiv Detail & Related papers (2023-07-22T04:52:27Z) - Multiplex Heterogeneous Graph Convolutional Network [25.494590588212542]
This work proposes a Multiplex Heterogeneous Graph Convolutional Network (MHGCN) for heterogeneous network embedding.
Our MHGCN can automatically learn the useful heterogeneous meta-path interactions of different lengths in multiplex heterogeneous networks.
arXiv Detail & Related papers (2022-08-12T06:17:54Z) - Pay Attention to Relations: Multi-embeddings for Attributed Multiplex
Networks [0.0]
RAHMeN is a novel unified relation-aware embedding framework for attributed heterogeneous multiplex networks.
Our model incorporates node attributes, motif-based features, relation-based GCN approaches, and relational self-attention to learn embeddings of nodes.
We evaluate our model on four real-world datasets from Amazon, Twitter, YouTube, and Tissue PPIs in both transductive and inductive settings.
arXiv Detail & Related papers (2022-03-03T18:31:29Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - GAHNE: Graph-Aggregated Heterogeneous Network Embedding [32.44836376873812]
Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture rich intrinsic information of heterogeneous networks.
Existing models either depend on manually designing meta-paths, ignore mutual effects between different semantics, or omit some aspects of information from global networks.
In GAHNE model, we develop several mechanisms that can aggregate semantic representations from different single-type sub-networks as well as fuse the global information into final embeddings.
arXiv Detail & Related papers (2020-12-23T07:11:30Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
Community is a common characteristic of networks including social networks, biological networks, computer and information networks.
We propose an efficient message passing based algorithm to simultaneously detect communities for all homogeneous networks.
arXiv Detail & Related papers (2020-04-06T17:36:24Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z) - Adversarial Deep Network Embedding for Cross-network Node Classification [27.777464531860325]
Cross-network node classification leverages the abundant labeled nodes from a source network to help classify unlabeled nodes in a target network.
In this paper, we propose an adversarial cross-network deep network embedding model to integrate adversarial domain adaptation with deep network embedding.
The proposed ACDNE model achieves the state-of-the-art performance in cross-network node classification.
arXiv Detail & Related papers (2020-02-18T04:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.