Collaborative Graph Neural Networks for Attributed Network Embedding
- URL: http://arxiv.org/abs/2307.11981v1
- Date: Sat, 22 Jul 2023 04:52:27 GMT
- Title: Collaborative Graph Neural Networks for Attributed Network Embedding
- Authors: Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, and Xia Hu
- Abstract summary: Graph neural networks (GNNs) have shown prominent performance on attributed network embedding.
We propose COllaborative graph Neural Networks--CONN, a tailored GNN architecture for network embedding.
- Score: 63.39495932900291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have shown prominent performance on attributed
network embedding. However, existing efforts mainly focus on exploiting network
structures, while the exploitation of node attributes is rather limited as they
only serve as node features at the initial layer. This simple strategy impedes
the potential of node attributes in augmenting node connections, leading to
limited receptive field for inactive nodes with few or even no neighbors.
Furthermore, the training objectives (i.e., reconstructing network structures)
of most GNNs also do not include node attributes, although studies have shown
that reconstructing node attributes is beneficial. Thus, it is encouraging to
deeply involve node attributes in the key components of GNNs, including graph
convolution operations and training objectives. However, this is a nontrivial
task since an appropriate way of integration is required to maintain the merits
of GNNs. To bridge the gap, in this paper, we propose COllaborative graph
Neural Networks--CONN, a tailored GNN architecture for attribute network
embedding. It improves model capacity by 1) selectively diffusing messages from
neighboring nodes and involved attribute categories, and 2) jointly
reconstructing node-to-node and node-to-attribute-category interactions via
cross-correlation. Experiments on real-world networks demonstrate that CONN
excels state-of-the-art embedding algorithms with a great margin.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph
Embeddings Augmentation [11.841882902141696]
We present a novel approach denoted as Ego-centric Spectral subGraph Embedding Augmentation (ESGEA)
ESGEA aims to enhance and design node features, particularly in scenarios where information is lacking.
We evaluate the proposed method in a social network graph classification task where node attributes are unavailable.
arXiv Detail & Related papers (2023-10-10T14:57:29Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
Graph Neural Networks (GNNs) compute node representations by taking into account the topology of the node's ego-network and the features of the ego-network's nodes.
When the nodes do not have high-quality features, GNNs learn an embedding layer to compute node embeddings and use them as input features.
To reduce the memory associated with this embedding layer, hashing-based approaches, commonly used in applications like NLP and recommender systems, can potentially be used.
We present approaches that take advantage of the nodes' position in the graph to dramatically reduce the memory required.
arXiv Detail & Related papers (2021-08-31T22:42:25Z) - Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding [7.391641422048645]
We study the problem of embedding edgeless nodes such as users who newly enter the underlying network.
We propose Edgeless-GNN, a new framework that enables GNNs to generate node embeddings even for edgeless nodes through unsupervised inductive learning.
arXiv Detail & Related papers (2021-04-12T06:37:31Z) - DINE: A Framework for Deep Incomplete Network Embedding [33.97952453310253]
We propose a Deep Incomplete Network Embedding method, namely DINE.
We first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework.
We evaluate DINE over three networks on multi-label classification and link prediction tasks.
arXiv Detail & Related papers (2020-08-09T04:59:35Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.