Topological Floquet interface states in optical fibre loops
- URL: http://arxiv.org/abs/2010.06966v1
- Date: Wed, 14 Oct 2020 11:15:54 GMT
- Title: Topological Floquet interface states in optical fibre loops
- Authors: Arstan Bisianov and Andre Muniz and Ulf Peschel and Oleg Egorov
- Abstract summary: We experimentally observe a coexisting pair of anomalous Floquet interface states in a (1+1)-dimensional Discrete Photon Walk.
We explicitly verify the robustness of these states against local static perturbations respecting chiral symmetry of the system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally observe a coexisting pair of topological anomalous Floquet
interface states in a (1+1)-dimensional Discrete Photon Walk. We explicitly
verify the robustness of these states against local static perturbations
respecting chiral symmetry of the system, as well as their vulnerability
against non-stationary perturbations. The walk is implemented based on pulses
propagating in a pair of coupled fibre loops of dissimilar lengths with
dynamically variable mutual coupling. The topological interface is created via
phase modulation in one of the loops, which allows for an anomalous Floquet
topological transition at the interface.
Related papers
- Nonlinearity-driven Topology via Spontaneous Symmetry Breaking [79.16635054977068]
We consider a chain of parametrically-driven quantum resonators coupled only via weak nearest-neighbour cross-Kerr interaction.
Topology is dictated by the structure of the Kerr nonlinearity, yielding a non-trivial bulk-boundary correspondence.
arXiv Detail & Related papers (2025-03-15T00:20:45Z) - Phase Transitions in Nonreciprocal Driven-Dissipative Condensates [0.6291443816903801]
We investigate the influence of boundaries and spatial nonreciprocity on nonequilibrium driven-dissipative phase transitions.
Our model avoids post-selection or unphysical non-Hermitian Hamiltonians and is experimentally realizable in platforms such as superconducting circuits.
arXiv Detail & Related papers (2025-02-07T19:00:07Z) - Quantum Phase Transitions between Symmetry-Enriched Fracton Phases [5.131854158904627]
We study an analogous situation for three-dimensional fracton phases by means of tensor network states (isoTNS) with finite bond dimension.
We find a family of exact wavefunctions for which the symmetry fractionalization under an anti-unitary symmetry on both types of excitations is directly visible.
Based on the isoTNS description of the wavefunction, we determine a linear-depth quantum circuit to sequentially realize these states on a quantum processor.
arXiv Detail & Related papers (2025-01-30T19:00:02Z) - Floquet topological phases with large winding number [9.104339861886608]
We propose a novel driving scheme that breaks rotation symmetry but maintains inversion symmetry of the instantaneous Hamiltonian.
We discover a novel type of anomalous Floquet topological phase with winding number larger than 1.
arXiv Detail & Related papers (2024-01-02T15:34:59Z) - Symmetry-protected topological corner modes in a periodically driven
interacting spin lattice [0.0]
Floquet symmetry protected second-order topological phases in a simple but insightful two-dimensional spin-1/2 lattice.
We show that corner localized $mathbbZ$ symmetry broken operators commute and anticommute with the one-period time evolution operator.
We propose a means to detect the signature of such modes in experiments and discuss the effect of imperfections.
arXiv Detail & Related papers (2022-06-14T07:51:20Z) - Bond order via cavity-mediated interactions [0.0]
We numerically study the phase diagram of bosons tightly trapped in the lowest band of an optical lattice and dispersively coupled to a single-mode cavity field.
arXiv Detail & Related papers (2022-01-14T14:06:59Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Signatures of the $\pi$-mode anomaly in (1+1) dimensional
periodically-driven topological/normal insulator heterostructures [1.8059692880799785]
A pi-mode anomaly is proposed in a periodically-driven topological/normal (TI/NI) heterostructure.
For the first time, we experimentally observed the $pi$-mode domain wall in certain driven frequencies.
Our prediction and observation could pave a new avenue on exploring anomalies in both periodically-driven classical and quantum systems.
arXiv Detail & Related papers (2020-10-08T20:24:16Z) - Floquet higher order topological insulator in a periodically driven
bipartite lattice [0.0]
Floquet higher order topological insulators (FHOTIs) are a novel topological phase that can occur in periodically driven lattices.
We predict that this lattice can be realized in experimentally-realistic optical waveguide arrays.
arXiv Detail & Related papers (2020-10-08T10:15:36Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.