論文の概要: Medical Code Assignment with Gated Convolution and Note-Code Interaction
- arxiv url: http://arxiv.org/abs/2010.06975v3
- Date: Tue, 15 Mar 2022 17:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 13:56:59.657089
- Title: Medical Code Assignment with Gated Convolution and Note-Code Interaction
- Title(参考訳): Gated Convolution と Note-Code Interaction を用いた医用コードアサインメント
- Authors: Shaoxiong Ji and Shirui Pan and Pekka Marttinen
- Abstract要約: 本稿では,医療コードの自動割り当てのための新しい手法,ゲート畳み込みニューラルネットワーク,ノートコードインタラクション(GatedCNN-NCI)を提案する。
新たなノート-コードインタラクション設計とグラフメッセージパッシング機構により、ノートとコード間の基盤となる依存関係を明示的にキャプチャする。
提案モデルはほとんどの場合,最先端モデルよりも優れており,モデルサイズは軽量ベースラインと同程度である。
- 参考スコア(独自算出の注目度): 39.079615516043674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical code assignment from clinical text is a fundamental task in clinical
information system management. As medical notes are typically lengthy and the
medical coding system's code space is large, this task is a long-standing
challenge. Recent work applies deep neural network models to encode the medical
notes and assign medical codes to clinical documents. However, these methods
are still ineffective as they do not fully encode and capture the lengthy and
rich semantic information of medical notes nor explicitly exploit the
interactions between the notes and codes. We propose a novel method, gated
convolutional neural networks, and a note-code interaction (GatedCNN-NCI), for
automatic medical code assignment to overcome these challenges. Our methods
capture the rich semantic information of the lengthy clinical text for better
representation by utilizing embedding injection and gated information
propagation in the medical note encoding module. With a novel note-code
interaction design and a graph message passing mechanism, we explicitly capture
the underlying dependency between notes and codes, enabling effective code
prediction. A weight sharing scheme is further designed to decrease the number
of trainable parameters. Empirical experiments on real-world clinical datasets
show that our proposed model outperforms state-of-the-art models in most cases,
and our model size is on par with light-weighted baselines.
- Abstract(参考訳): 臨床テキストからの医療コード割り当ては臨床情報システム管理の基本的なタスクである。
医療記録は一般的に長く、医療符号化システムのコード空間は大きいため、この課題は長年にわたる課題である。
最近の研究は、ディープニューラルネットワークモデルを用いて医療ノートを符号化し、臨床文書に医療コードを割り当てている。
しかし、これらの手法は、医用ノートの長大で豊かな意味情報を完全にエンコードしたり、音符と符号の相互作用を明示的に活用したりしないため、まだ効果がない。
本稿では,これらの課題を克服するために,新しい手法,ゲート畳み込みニューラルネットワーク,ノートコードインタラクション(GatedCNN-NCI)を提案する。
本手法は,医療用ノートエンコーディングモジュールの埋め込み注入とゲート情報伝搬を利用して,臨床テキストのリッチな意味情報を抽出し,表現性を向上する。
新しいノート-コードインタラクション設計とグラフメッセージパッシング機構により、ノートとコード間の基盤となる依存関係を明示的に把握し、効果的なコード予測を可能にする。
さらに、トレーニング可能なパラメータの数を減らすために、重み共有方式が設計されている。
実世界の臨床データセットに関する実証実験では,提案モデルが最先端モデルよりも優れており,モデルサイズは軽量ベースラインと同程度であることがわかった。
関連論文リスト
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Medical Codes Prediction from Clinical Notes: From Human Coders to
Machines [0.21320960069210473]
臨床ノートから医療コードを予測することは、すべての医療提供組織にとって実用的で不可欠である。
最大の課題は、構造化されていないフリーテキスト臨床ノートから数千の高次元コードから適切な医療コードを直接識別することである。
最近の研究では、本格的なディープラーニングベースの手法による最先端のコード予測結果が示されている。
論文 参考訳(メタデータ) (2022-10-30T14:24:13Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction
from Clinical Notes by Machines [0.42641920138420947]
医用コード代入マッピングを学習するための、読み取り、 attend、および Code (RAC) モデルを提示する。
RACは、現在最高のマクロF1を18.7%上回るSOTA(the New State of the Art)を確立している。
この新たなマイルストーンは、マシンにおける完全自律型医療コーディング(AMC)への重要な一歩となる。
論文 参考訳(メタデータ) (2021-07-10T06:01:58Z) - Multitask Recalibrated Aggregation Network for Medical Code Prediction [19.330911490203317]
長期かつノイズの多い臨床文書の符号化の課題を解決するために,マルチタスク再校正アグリゲーションネットワークを提案する。
特に、マルチタスク学習は、異なるコーディングスキーム間で情報を共有し、異なる医療コード間の依存関係をキャプチャする。
実世界のMIMIC-IIIデータセットによる実験では、予測性能が大幅に向上した。
論文 参考訳(メタデータ) (2021-04-02T09:22:10Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
事前訓練されたモデルが、さらなるアーキテクチャエンジニアリングなしで医療コード予測に有用かどうかは明らかではない。
本稿では,単語間のインタラクションをキャプチャし,ラベル情報を活用する階層的な微調整アーキテクチャを提案する。
現在の傾向とは対照的に、我々は慎重に訓練された古典的なCNNは、頻繁なコードでMIMIC-IIIサブセット上の注意ベースのモデルを上回ることを実証します。
論文 参考訳(メタデータ) (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Dilated Convolutional Attention Network for Medical Code Assignment from
Clinical Text [19.701824507057623]
本稿では,拡張畳み込み,残差接続,ラベルアテンションを統合した拡張畳み込み注意ネットワーク(DCAN)を提案する。
拡張畳み込み(Dilated convolutions)を用いて、拡張サイズとともに指数関数的に増加する受容野で複雑な医療パターンをキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T11:55:58Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。