論文の概要: Towards more patient friendly clinical notes through language models and
ontologies
- arxiv url: http://arxiv.org/abs/2112.12672v1
- Date: Thu, 23 Dec 2021 16:11:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-24 14:51:56.853432
- Title: Towards more patient friendly clinical notes through language models and
ontologies
- Title(参考訳): 言語モデルとオントロジーによる患者フレンドリーな臨床ノートを目指して
- Authors: Francesco Moramarco, Damir Juric, Aleksandar Savkov, Jack Flann, Maria
Lehl, Kristian Boda, Tessa Grafen, Vitalii Zhelezniak, Sunir Gohil, Alex
Papadopoulos Korfiatis, Nils Hammerla
- Abstract要約: 本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
- 参考スコア(独自算出の注目度): 57.51898902864543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical notes are an efficient way to record patient information but are
notoriously hard to decipher for non-experts. Automatically simplifying medical
text can empower patients with valuable information about their health, while
saving clinicians time. We present a novel approach to automated simplification
of medical text based on word frequencies and language modelling, grounded on
medical ontologies enriched with layman terms. We release a new dataset of
pairs of publicly available medical sentences and a version of them simplified
by clinicians. Also, we define a novel text simplification metric and
evaluation framework, which we use to conduct a large-scale human evaluation of
our method against the state of the art. Our method based on a language model
trained on medical forum data generates simpler sentences while preserving both
grammar and the original meaning, surpassing the current state of the art.
- Abstract(参考訳): 臨床ノートは患者情報を記録するための効果的な方法であるが、非専門家の解読が難しいことで知られている。
自動的に医療テキストを単純化することで、患者に健康に関する貴重な情報を与え、臨床医の時間を節約できる。
本稿では,日常語で表現された医療オントロジーに基づく,単語頻度と言語モデリングに基づく医療テキストの簡易化手法を提案する。
我々は,公開医療文のペアのデータセットと,臨床医による簡易化版を新たにリリースした。
また,本手法の大規模人為的評価を技術状況に対して行うために,新たなテキスト簡易化尺度と評価フレームワークを定義した。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
関連論文リスト
- Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient
Instructions [65.11629300465812]
臨床作業量を削減しつつ,不完全性を回避する客観的な手段を提供する新しい課題を提案する。
Re3Writerは医師の作業パターンを模倣し、医師によって書かれた歴史的なPIから関連する作業経験を最初に取得する。
その後、回収された作業経験を洗練させ、医療知識を推論して有用な情報を抽出する。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
本稿では,英語を使わないクリニックに対して,このタスクを実行するための言語間知識伝達戦略について検討する。
ギリシャ語とスペイン語のクリニックに対して,異なる臨床領域のクリニカルノートを活用して,これらの戦略を評価する。
以上の結果から,多言語データを用いることで,臨床表現型モデルが改善され,データの疎度を補うことが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-08-03T08:33:21Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Estimating Redundancy in Clinical Text [6.245180523143739]
臨床医は、既存のメモを複製し、それに従って更新することで、新しい文書をポップアップさせる。
情報冗長性の定量化は、臨床物語を扱う革新を評価する上で重要な役割を果たす。
冗長性を測定するための2つの戦略として,情報理論アプローチと語彙論的・意味論的モデルを提示し,評価する。
論文 参考訳(メタデータ) (2021-05-25T11:01:45Z) - Word-level Text Highlighting of Medical Texts forTelehealth Services [0.0]
本研究の目的は,異なるテキストハイライト技術が関連する医療状況をどのように捉えることができるかを示すことである。
3つの異なる単語レベルのテキストハイライト手法を実装し評価する。
実験の結果、ニューラルネットワークアプローチは医療関連用語の強調に成功していることがわかった。
論文 参考訳(メタデータ) (2021-05-21T15:13:54Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Paragraph-level Simplification of Medical Texts [35.650619024498425]
手動の簡略化は生物医学文献の急速に成長する体にスケールしません。
異なる臨床トピックに関連するすべての公開された証拠の技術的およびレイアウト要約からなる英語での平行テキストの新しいコーパスを紹介します。
本研究では,科学テキストを前提としたマスキング型言語モデルから,確率スコアに基づく新たな指標を提案する。
論文 参考訳(メタデータ) (2021-04-12T18:56:05Z) - Automated Lay Language Summarization of Biomedical Scientific Reviews [16.01452242066412]
健康リテラシーは適切な健康判断と治療結果の確保において重要な要素として浮上している。
医療用語とこのドメインの専門言語の複雑な構造は、健康情報を解釈するのが特に困難にします。
本稿では,生物医学的レビューの要約を自動生成する新しい課題について紹介する。
論文 参考訳(メタデータ) (2020-12-23T10:01:18Z) - Comparing Rule-based, Feature-based and Deep Neural Methods for
De-identification of Dutch Medical Records [4.339510167603376]
オランダの医療機関9施設と3つのドメインのデータをサンプリングし,1260人の医療記録からなる多様なデータセットを構築した。
言語とドメイン間での3つの非識別手法の一般化性をテストする。
論文 参考訳(メタデータ) (2020-01-16T09:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。