論文の概要: MetaAugment: Sample-Aware Data Augmentation Policy Learning
- arxiv url: http://arxiv.org/abs/2012.12076v1
- Date: Tue, 22 Dec 2020 15:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:25:58.951744
- Title: MetaAugment: Sample-Aware Data Augmentation Policy Learning
- Title(参考訳): MetaAugment: サンプル対応データ拡張ポリシー学習
- Authors: Fengwei Zhou, Jiawei Li, Chuanlong Xie, Fei Chen, Lanqing Hong, Rui
Sun, Zhenguo Li
- Abstract要約: 我々は、サンプル再重み付け問題として定式化することで、サンプル認識データ拡張ポリシーを効率的に学習する。
拡張ポリシーネットワークは、変換と対応する拡張画像とを入力とし、重みを出力してタスクネットワークで計算された拡張画像損失を調整する。
トレーニング段階では、タスクネットワークは強化訓練画像の重み付け損失を最小限に抑え、ポリシーネットワークはメタラーニングによる検証セット上のタスクネットワークの損失を最小限にする。
- 参考スコア(独自算出の注目度): 20.988767360529362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated data augmentation has shown superior performance in image
recognition. Existing works search for dataset-level augmentation policies
without considering individual sample variations, which are likely to be
sub-optimal. On the other hand, learning different policies for different
samples naively could greatly increase the computing cost. In this paper, we
learn a sample-aware data augmentation policy efficiently by formulating it as
a sample reweighting problem. Specifically, an augmentation policy network
takes a transformation and the corresponding augmented image as inputs, and
outputs a weight to adjust the augmented image loss computed by a task network.
At training stage, the task network minimizes the weighted losses of augmented
training images, while the policy network minimizes the loss of the task
network on a validation set via meta-learning. We theoretically prove the
convergence of the training procedure and further derive the exact convergence
rate. Superior performance is achieved on widely-used benchmarks including
CIFAR-10/100, Omniglot, and ImageNet.
- Abstract(参考訳): 自動データ拡張は画像認識において優れた性能を示している。
既存の作業は、個々のサンプルのバリエーションを考慮せずに、データセットレベルの拡張ポリシーを検索する。
一方,異なるサンプルに対する異なるポリシーの学習は,計算コストを大幅に向上させる可能性がある。
本稿では,サンプル重み付け問題として定式化することで,サンプル認識データ拡張ポリシーを効率的に学習する。
具体的には、拡張ポリシーネットワークが変換と対応する拡張画像を入力として入力し、タスクネットワークで計算された拡張画像損失を調整するために重みを出力する。
トレーニング段階では、タスクネットワークは強化訓練画像の重み付け損失を最小限に抑え、ポリシーネットワークはメタラーニングによる検証セット上のタスクネットワークの損失を最小限にする。
理論上、訓練手順の収束を証明し、さらに正確な収束率を導出する。
CIFAR-10/100、Omniglot、ImageNetなど、広く使われているベンチマークでは、上位のパフォーマンスが達成されている。
関連論文リスト
- When to Learn What: Model-Adaptive Data Augmentation Curriculum [32.99634881669643]
本稿では,モデル適応型データ拡張(MADAug)を提案する。
従来の作業とは異なり、MADAugはトレーニング段階によって異なるモデル適応ポリシーにより、各入力画像に対する拡張演算子を選択し、より良い一般化のために最適化されたデータ拡張カリキュラムを生成する。
論文 参考訳(メタデータ) (2023-09-09T10:35:27Z) - Soft Augmentation for Image Classification [68.71067594724663]
本稿では,変分変換による拡張の一般化とソフト拡張を提案する。
ソフトターゲットは、より攻撃的なデータ拡張を可能にすることを示す。
また,ソフト拡張が自己教師付き分類タスクに一般化されることも示している。
論文 参考訳(メタデータ) (2022-11-09T01:04:06Z) - Don't Touch What Matters: Task-Aware Lipschitz Data Augmentation for
Visual Reinforcement Learning [27.205521177841568]
視覚強化学習(RL)のためのタスク対応リプシッツデータ拡張(TLDA)を提案する。
TLDAは、大きなリプシッツ定数を持つタスク関連画素を明確に識別し、タスク関連画素のみを拡大する。
3つの異なるビジュアルコントロールベンチマークにおいて、従来の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-02-21T04:22:07Z) - Feature transforms for image data augmentation [74.12025519234153]
画像分類において、多くの拡張アプローチは単純な画像操作アルゴリズムを利用する。
本研究では,14種類の拡張アプローチを組み合わせて生成した画像を追加することで,データレベルでのアンサンブルを構築する。
事前トレーニングされたResNet50ネットワークは、各拡張メソッドから派生した画像を含むトレーニングセットに基づいて微調整される。
論文 参考訳(メタデータ) (2022-01-24T14:12:29Z) - Contrastive Learning with Stronger Augmentations [63.42057690741711]
本論文では,現在のコントラスト学習のアプローチを補完する,より強い拡張(A)によるコントラスト学習という汎用フレームワークを提案する。
ここでは、表現バンク上の弱強調画像と強拡張画像との間の分布のばらつきを利用して、強拡張クエリの検索を監督する。
実験では、強力な画像からの情報により、パフォーマンスが大幅に向上します。
論文 参考訳(メタデータ) (2021-04-15T18:40:04Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
我々は,データ拡張戦略により,Kinetics-100,UCF-101,HMDB-51データセットのパフォーマンスが期待できることを示す。
また,完全な教師付き設定でデータ拡張戦略を検証し,性能向上を実証した。
論文 参考訳(メタデータ) (2021-03-30T17:59:49Z) - Does Data Augmentation Benefit from Split BatchNorms [29.134017115737507]
State-of-the-art data augmentationはトレーニングイメージを強く歪ませ、トレーニング中に見られる例と推論の間に相違をもたらす。
本稿では, 配信外, 強化画像に対する補助的BatchNormを提案する。
この手法により,CIFAR-10,CIFAR-100,ImageNetなどの画像分類ベンチマークの性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-10-15T15:00:43Z) - Data Augmentation for Meta-Learning [58.47185740820304]
メタ学習アルゴリズムは、各トレーニングステップでデータ、クエリデータ、タスクをサンプリングする。
データ拡張は、クラス毎に利用可能な画像の数を増やすだけでなく、全く新しいクラス/タスクを生成するためにも使用できる。
提案したメタ固有データ拡張は,数ショットの分類ベンチマークにおいて,メタラーナーの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-10-14T13:48:22Z) - Learning Test-time Augmentation for Content-based Image Retrieval [42.188013259368766]
オフザシェルフ畳み込みニューラルネットワークは、多くの画像検索タスクにおいて優れた結果をもたらす。
既存の画像検索手法では、ターゲットデータ特有のバリエーションに適応するために、事前訓練されたネットワークを微調整または修正する必要がある。
本手法は, テスト時に強調した画像から抽出した特徴を, 強化学習を通じて学習したポリシーに則って集約することにより, 既製の特徴の分散を促進させる。
論文 参考訳(メタデータ) (2020-02-05T05:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。