論文の概要: Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion
Segmentation
- arxiv url: http://arxiv.org/abs/2010.07411v2
- Date: Mon, 18 Jan 2021 18:54:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 13:10:28.982368
- Title: Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion
Segmentation
- Title(参考訳): MRI前立腺病変分類における領域適応の不確かさ
- Authors: Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos,
Eleftheria Panagiotaki
- Abstract要約: 我々は, 癌評価のための取得最適化プロトコルを含む, よりリッチなMRIモダリティである mp-MRI から VERDICT への変換を検討する。
以上の結果から,単純なCycleGANベースラインを併用したタンデムを用いて,対象領域の画像表現を体系的により優れた画像表現で抽出できることが示唆された。
- 参考スコア(独自算出の注目度): 15.919637739630353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for training data can impede the adoption of novel imaging
modalities for learning-based medical image analysis. Domain adaptation methods
partially mitigate this problem by translating training data from a related
source domain to a novel target domain, but typically assume that a one-to-one
translation is possible. Our work addresses the challenge of adapting to a more
informative target domain where multiple target samples can emerge from a
single source sample. In particular we consider translating from mp-MRI to
VERDICT, a richer MRI modality involving an optimized acquisition protocol for
cancer characterization. We explicitly account for the inherent uncertainty of
this mapping and exploit it to generate multiple outputs conditioned on a
single input. Our results show that this allows us to extract systematically
better image representations for the target domain, when used in tandem with
both simple, CycleGAN-based baselines, as well as more powerful approaches that
integrate discriminative segmentation losses and/or residual adapters. When
compared to its deterministic counterparts, our approach yields substantial
improvements across a broad range of dataset sizes, increasingly strong
baselines, and evaluation measures.
- Abstract(参考訳): トレーニングデータの必要性は、学習型医用画像解析における新しい画像モダリティの導入を妨げる可能性がある。
ドメイン適応法は、関連するソースドメインから新しいターゲットドメインにトレーニングデータを変換することで部分的にこの問題を軽減するが、一般的には1対1の翻訳が可能であると仮定する。
我々の研究は、単一のソースサンプルから複数のターゲットサンプルが出現する、より情報的なターゲットドメインに適応するという課題に対処する。
特に,癌評価のための最適化された取得プロトコルを含む,よりリッチなMRIモダリティである mp-MRI から VERDICT への変換を検討する。
我々は、このマッピングの固有の不確実性を明確に説明し、1つの入力で条件付けられた複数の出力を生成するためにそれを利用する。
以上の結果から,単純なCycleGANベースラインと,識別的セグメンテーション損失と/または残差アダプタを併用したより強力なアプローチの両面から,対象領域に対する画像表現を系統的に向上させることが可能であることが示唆された。
決定論的手法と比較して、我々の手法は、幅広いデータセットサイズ、ますます強力なベースライン、評価尺度で大幅に改善される。
関連論文リスト
- An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation [10.061310311839856]
Source-free Domain Adaptation (SFDA)は、プライバシとセキュリティ上の問題に対処するために、深いセグメンテーションモデルを適用するための有望なテクニックである。
安定したドメイン適応を実現するための新しい不確実性誘導型自己学習(UGTST)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-03T08:13:16Z) - Unsupervised Federated Domain Adaptation for Segmentation of MRI Images [20.206972068340843]
我々は、複数のアノテーション付きソースドメインを用いた教師なしフェデレーションドメイン適応法を開発した。
提案手法により,アノテートされていないターゲットドメインにおいて,複数のアノテートされたソースドメインからの知識の伝達が可能となる。
論文 参考訳(メタデータ) (2024-01-02T00:31:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
セマンティック一貫性を促進する2つの新しい損失関数を導入する。
特に,高度な拡散強調画像技術であるVERDICT-MRIの性能向上の課題に対処する。
論文 参考訳(メタデータ) (2021-09-19T17:33:26Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
マルチモーダル心臓画像分割のための新しいUDA法を提案する。
提案手法は、逆学習に基づいて、異なる空間におけるソースとターゲットドメイン間のネットワーク特徴を適応する。
本手法はannotated source domainからunannotated target domainへの適応により2つの心データセットで検証した。
論文 参考訳(メタデータ) (2021-03-15T08:59:44Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。