Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion
Segmentation
- URL: http://arxiv.org/abs/2010.07411v2
- Date: Mon, 18 Jan 2021 18:54:13 GMT
- Title: Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion
Segmentation
- Authors: Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos,
Eleftheria Panagiotaki
- Abstract summary: We consider translating from mp-MRI to VERDICT, a richer MRI modality involving an acquisition optimized protocol for cancer characterization.
Our results show that this allows us to extract systematically better image representations for the target domain, when used in tandem with both simple, CycleGAN-based baselines.
- Score: 15.919637739630353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for training data can impede the adoption of novel imaging
modalities for learning-based medical image analysis. Domain adaptation methods
partially mitigate this problem by translating training data from a related
source domain to a novel target domain, but typically assume that a one-to-one
translation is possible. Our work addresses the challenge of adapting to a more
informative target domain where multiple target samples can emerge from a
single source sample. In particular we consider translating from mp-MRI to
VERDICT, a richer MRI modality involving an optimized acquisition protocol for
cancer characterization. We explicitly account for the inherent uncertainty of
this mapping and exploit it to generate multiple outputs conditioned on a
single input. Our results show that this allows us to extract systematically
better image representations for the target domain, when used in tandem with
both simple, CycleGAN-based baselines, as well as more powerful approaches that
integrate discriminative segmentation losses and/or residual adapters. When
compared to its deterministic counterparts, our approach yields substantial
improvements across a broad range of dataset sizes, increasingly strong
baselines, and evaluation measures.
Related papers
- An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation [10.061310311839856]
Source-free Domain Adaptation (SFDA) is a promising technique to adapt deep segmentation models to address privacy and security concerns.
We propose a novel Uncertainty-guided Tiered Self-training (UGTST) framework to achieve stable domain adaptation.
arXiv Detail & Related papers (2024-07-03T08:13:16Z) - Unsupervised Federated Domain Adaptation for Segmentation of MRI Images [20.206972068340843]
We develop a method for unsupervised federated domain adaptation using multiple annotated source domains.
Our approach enables the transfer of knowledge from several annotated source domains to adapt a model for effective use in an unannotated target domain.
arXiv Detail & Related papers (2024-01-02T00:31:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
We introduce two new loss functions that promote semantic consistency.
In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique.
arXiv Detail & Related papers (2021-09-19T17:33:26Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.