An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation
- URL: http://arxiv.org/abs/2407.02893v2
- Date: Thu, 4 Jul 2024 08:11:49 GMT
- Title: An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation
- Authors: Zihao Luo, Xiangde Luo, Zijun Gao, Guotai Wang,
- Abstract summary: Source-free Domain Adaptation (SFDA) is a promising technique to adapt deep segmentation models to address privacy and security concerns.
We propose a novel Uncertainty-guided Tiered Self-training (UGTST) framework to achieve stable domain adaptation.
- Score: 10.061310311839856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have exhibited remarkable efficacy in accurately delineating the prostate for diagnosis and treatment of prostate diseases, but challenges persist in achieving robust generalization across different medical centers. Source-free Domain Adaptation (SFDA) is a promising technique to adapt deep segmentation models to address privacy and security concerns while reducing domain shifts between source and target domains. However, recent literature indicates that the performance of SFDA remains far from satisfactory due to unpredictable domain gaps. Annotating a few target domain samples is acceptable, as it can lead to significant performance improvement with a low annotation cost. Nevertheless, due to extremely limited annotation budgets, careful consideration is needed in selecting samples for annotation. Inspired by this, our goal is to develop Active Source-free Domain Adaptation (ASFDA) for medical image segmentation. Specifically, we propose a novel Uncertainty-guided Tiered Self-training (UGTST) framework, consisting of efficient active sample selection via entropy-based primary local peak filtering to aggregate global uncertainty and diversity-aware redundancy filter, coupled with a tiered self-learning strategy, achieves stable domain adaptation. Experimental results on cross-center prostate MRI segmentation datasets revealed that our method yielded marked advancements, with a mere 5% annotation, exhibiting an average Dice score enhancement of 9.78% and 7.58% in two target domains compared with state-of-the-art methods, on par with fully supervised learning. Code is available at:https://github.com/HiLab-git/UGTST
Related papers
- Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning [4.850478245721347]
We introduce RL4Seg, an innovative reinforcement learning framework that reduces the need to otherwise incorporate large expertly annotated datasets in the target domain.
Using a target dataset of 10,000 unannotated 2D echocardiographic images, RL4Seg achieves 99% anatomical validity on a subset of 220 expert-validated subjects from the target domain.
arXiv Detail & Related papers (2024-06-25T19:26:39Z) - Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled data to the target domain with only unlabelled data.
In this study, we propose a two-stage training stage for robust domain adaptation.
We propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries.
arXiv Detail & Related papers (2023-10-25T14:25:18Z) - Dual-Reference Source-Free Active Domain Adaptation for Nasopharyngeal
Carcinoma Tumor Segmentation across Multiple Hospitals [9.845637899896365]
Nasopharyngeal carcinoma (NPC) is a prevalent and clinically significant malignancy that predominantly impacts the head and neck area.
We propose a novel Sourece-Free Active Domain Adaptation (SFADA) framework to facilitate domain adaptation for the Gross Tumor Volume (GTV) segmentation task.
We collect a large-scale clinical dataset comprising 1057 NPC patients from five hospitals to validate our approach.
arXiv Detail & Related papers (2023-09-23T15:26:27Z) - Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
We propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA)
The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation.
Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently.
arXiv Detail & Related papers (2023-08-25T10:22:13Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to an unlabeled heterogeneous target domain.
We propose "off-the-shelf (OS)" UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation.
arXiv Detail & Related papers (2022-09-16T13:13:50Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
Supervised approaches have led to great success with the advance of deep learning, but they rely on large quantities of ground-truth depth annotations.
Unsupervised domain adaptation (UDA) transfers knowledge from labeled source data to unlabeled target data, so as to relax the constraint of supervised learning.
We propose a novel UDA method for MDE, referred to as Learning Feature Decomposition for Adaptation (LFDA), which learns to decompose the feature space into content and style components.
arXiv Detail & Related papers (2022-07-30T08:05:35Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
We propose a two-stage approach for source-free domain adaptive image segmentation.
We focus on generating target-specific pseudo labels while suppressing high entropy regions.
In the second stage, we focus on adapting the network for task-specific representation.
arXiv Detail & Related papers (2022-03-29T17:50:22Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
Semi-supervised domain adaptation (SSDA) methods have demonstrated great potential in large-scale image classification tasks.
We present a novel and effective method to tackle this problem by using effective inter-domain and intra-domain semantic information propagation.
Our source code and pre-trained models will be released soon.
arXiv Detail & Related papers (2020-12-04T14:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.