論文の概要: Autonomous UAV Exploration of Dynamic Environments via Incremental
Sampling and Probabilistic Roadmap
- arxiv url: http://arxiv.org/abs/2010.07429v3
- Date: Sun, 21 Mar 2021 03:04:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 14:03:41.079360
- Title: Autonomous UAV Exploration of Dynamic Environments via Incremental
Sampling and Probabilistic Roadmap
- Title(参考訳): インクリメンタルサンプリングと確率的ロードマップによる動的環境の自律的UAV探査
- Authors: Zhefan Xu, Di Deng, Kenji Shimada
- Abstract要約: インクリメンタルサンプリングと確率的ロードマップ(PRM)を用いた未知環境探索のための新しい動的探索プランナ(DEP)を提案する。
本手法は, 動的環境を安全に探索し, 探索時間, 経路長, 計算時間でベンチマークプランナーより優れている。
- 参考スコア(独自算出の注目度): 0.3867363075280543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous exploration requires robots to generate informative trajectories
iteratively. Although sampling-based methods are highly efficient in unmanned
aerial vehicle exploration, many of these methods do not effectively utilize
the sampled information from the previous planning iterations, leading to
redundant computation and longer exploration time. Also, few have explicitly
shown their exploration ability in dynamic environments even though they can
run real-time. To overcome these limitations, we propose a novel dynamic
exploration planner (DEP) for exploring unknown environments using incremental
sampling and Probabilistic Roadmap (PRM). In our sampling strategy, nodes are
added incrementally and distributed evenly in the explored region, yielding the
best viewpoints. To further shortening exploration time and ensuring safety,
our planner optimizes paths locally and refine them based on the Euclidean
Signed Distance Function (ESDF) map. Meanwhile, as the multi-query planner, PRM
allows the proposed planner to quickly search alternative paths to avoid
dynamic obstacles for safe exploration. Simulation experiments show that our
method safely explores dynamic environments and outperforms the benchmark
planners in terms of exploration time, path length, and computational time.
- Abstract(参考訳): 自律探査では、ロボットが情報を反復的に生成する必要がある。
サンプリングに基づく手法は無人航空機の探索において非常に効率的であるが、これらの手法の多くは以前の計画の繰り返しから得られたサンプル情報を効果的に利用せず、冗長な計算と長い探査時間をもたらす。
また、リアルタイムに実行可能であるにもかかわらず、動的環境での探索能力を明確に示すものはほとんどない。
これらの制約を克服するために,インクリメンタルサンプリングと確率的ロードマップ(PRM)を用いた未知環境探索のための新しい動的探索プランナ(DEP)を提案する。
サンプリング戦略では、ノードを段階的に追加し、探索した領域に均等に分散し、最適な視点を与えます。
探索時間を短縮し,安全性を確保するため,計画者はユークリッド符号距離関数 (ESDF) マップに基づいて経路を最適化し,それらを改良する。
一方、マルチクエリのプランナーであるPRMは、提案したプランナーが安全な探索のために動的障害物を避けるために、迅速に代替経路を探索できるようにする。
シミュレーション実験により, 本手法は動的環境を安全に探索し, 探索時間, 経路長, 計算時間の観点からベンチマークプランナーを上回った。
関連論文リスト
- OTO Planner: An Efficient Only Travelling Once Exploration Planner for Complex and Unknown Environments [6.128246045267511]
オンリートラベル・ワン・プランナー」は複雑な環境下で繰り返し経路を減少させる効率的な探索プランナーである。
高速フロンティア更新、視点評価、視点改善が含まれる。
探査時間と移動距離を10%から20%削減し、フロンティア検出の速度を6~9倍向上させる。
論文 参考訳(メタデータ) (2024-06-11T14:23:48Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Multi-Robot Path Planning Combining Heuristics and Multi-Agent
Reinforcement Learning [0.0]
移動過程においては、移動距離を最小化しながら他の移動ロボットとの衝突を避ける必要がある。
従来の方法では、競合を避けるために探索手法を用いて経路を継続的に再設計するか、学習アプローチに基づいた衝突回避戦略を選択するかのどちらかである。
本稿では,探索,経験則,マルチエージェント強化学習を組み合わせた経路計画手法MAPPOHRを提案する。
論文 参考訳(メタデータ) (2023-06-02T05:07:37Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
我々は,タスクと現在の知識を考慮に入れながら,探索を計画できる手法を開発した。
本手法は, 探索基準値よりも2倍少ないサンプルで, 強いポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-06T20:28:55Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
深層強化学習(RL)に基づく情報経路計画のための新しい手法を提案する。
本手法は,モンテカルロ木探索とオフライン学習ニューラルネットワークを組み合わせた情報知覚行動の予測を行う。
ミッション中にトレーニングされたネットワークをデプロイすることにより、限られた計算資源を持つ物理プラットフォーム上で、サンプル効率の良いオンラインリプランニングが可能になる。
論文 参考訳(メタデータ) (2021-09-28T09:00:55Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
オンライン強化学習(RL)では、高次元環境における効率的な探索は依然として困難であり、報酬は少ない。
調査地域からの次の政策の逸脱を最大化することによる新たな探索手法を提案する。
提案手法は,最先端手法よりもサンプル効率を著しく向上させる。
論文 参考訳(メタデータ) (2021-06-18T17:57:00Z) - Deep Reinforcement Learning for Adaptive Exploration of Unknown
Environments [6.90777229452271]
私達はUAVのための1つのステップで調査および搾取間のトレードオフに適応的な調査のアプローチを開発します。
提案手法では, 環境マップを小型でトラクタブルな地図に分解するために, マップセグメンテーション手法を用いる。
その結果,本提案手法は,ランダムに生成された環境をナビゲートし,ベースラインと比較してAoIを短時間でカバーできることが示された。
論文 参考訳(メタデータ) (2021-05-04T16:29:44Z) - Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial
Vehicles (MAVs) [61.94975011711275]
そこで本稿では,RRT*textquotedblrightのテキストを幾何学的にベースとした動き計画手法を提案する。
提案手法では,適応探索空間とステアリング機能を導入したオリジナルのRT*を改良した。
提案手法を様々なシミュレーション環境で検証した。
論文 参考訳(メタデータ) (2020-08-29T09:55:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。