Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis
- URL: http://arxiv.org/abs/2010.07523v2
- Date: Mon, 14 Dec 2020 18:33:19 GMT
- Title: Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis
- Authors: Zhengxuan Wu, Desmond C. Ong
- Abstract summary: We investigate whether adding context to self-attention models improves performance on (T)ABSA.
We propose two variants of Context-Guided BERT (CG-BERT) that learn to distribute attention under different contexts.
Our work provides more evidence for the utility of adding context-dependencies to pretrained self-attention-based language models for context-based natural language tasks.
- Score: 14.394987796101349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-based sentiment analysis (ABSA) and Targeted ASBA (TABSA) allow
finer-grained inferences about sentiment to be drawn from the same text,
depending on context. For example, a given text can have different targets
(e.g., neighborhoods) and different aspects (e.g., price or safety), with
different sentiment associated with each target-aspect pair. In this paper, we
investigate whether adding context to self-attention models improves
performance on (T)ABSA. We propose two variants of Context-Guided BERT
(CG-BERT) that learn to distribute attention under different contexts. We first
adapt a context-aware Transformer to produce a CG-BERT that uses context-guided
softmax-attention. Next, we propose an improved Quasi-Attention CG-BERT model
that learns a compositional attention that supports subtractive attention. We
train both models with pretrained BERT on two (T)ABSA datasets: SentiHood and
SemEval-2014 (Task 4). Both models achieve new state-of-the-art results with
our QACG-BERT model having the best performance. Furthermore, we provide
analyses of the impact of context in the our proposed models. Our work provides
more evidence for the utility of adding context-dependencies to pretrained
self-attention-based language models for context-based natural language tasks.
Related papers
- How Language Models Prioritize Contextual Grammatical Cues? [3.9790222241649587]
We investigate how language models handle gender agreement when multiple gender cue words are present.
Our findings reveal striking differences in how encoder-based and decoder-based models prioritize and use contextual information for their predictions.
arXiv Detail & Related papers (2024-10-04T14:09:05Z) - Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet Extraction (EASTE) is a novel Aspect-Based Sentiment Analysis task.
Our research aims to achieve high performance on the EASTE task and investigates the impact of model size, type, and adaptation techniques on task performance.
Ultimately, we provide detailed insights and achieving state-of-the-art results in complex sentiment analysis.
arXiv Detail & Related papers (2024-07-04T16:48:14Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - On the Role of Bidirectionality in Language Model Pre-Training [85.14614350372004]
We study the role of bidirectionality in next token prediction, text infilling, zero-shot priming and fine-tuning.
We train models with up to 6.7B parameters, and find differences to remain consistent at scale.
arXiv Detail & Related papers (2022-05-24T02:25:05Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
We propose Dynamic Re-weighting BERT (DR-BERT) to learn dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence.
We then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA)
arXiv Detail & Related papers (2022-03-30T14:48:46Z) - BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis [4.522719296659495]
This paper proposes a unified framework to address aspect categorization and aspect-based sentiment subtasks.
We introduce a mechanism to construct an auxiliary-sentence for the implicit aspect using the corpus's semantic information.
We then encourage BERT to learn aspect-specific representation in response to this auxiliary-sentence, not the aspect itself.
arXiv Detail & Related papers (2022-03-22T13:12:27Z) - Understanding Pre-trained BERT for Aspect-based Sentiment Analysis [71.40586258509394]
This paper analyzes the pre-trained hidden representations learned from reviews on BERT for tasks in aspect-based sentiment analysis (ABSA)
It is not clear how the general proxy task of (masked) language model trained on unlabeled corpus without annotations of aspects or opinions can provide important features for downstream tasks in ABSA.
arXiv Detail & Related papers (2020-10-31T02:21:43Z) - Improving BERT Performance for Aspect-Based Sentiment Analysis [3.5493798890908104]
Aspect-Based Sentiment Analysis (ABSA) studies the consumer opinion on the market products.
It involves examining the type of sentiments as well as sentiment targets expressed in product reviews.
We show that applying the proposed models eliminates the need for further training of the BERT model.
arXiv Detail & Related papers (2020-10-22T13:52:18Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.