論文の概要: Certifying Neural Network Robustness to Random Input Noise from Samples
- arxiv url: http://arxiv.org/abs/2010.07532v1
- Date: Thu, 15 Oct 2020 05:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 03:44:29.856564
- Title: Certifying Neural Network Robustness to Random Input Noise from Samples
- Title(参考訳): ランダム入力雑音に対するニューラルネットワークのロバスト性検証
- Authors: Brendon G. Anderson, Somayeh Sojoudi
- Abstract要約: 入力の不確実性の存在下でのニューラルネットワークの堅牢性を証明する方法は、安全クリティカルな設定において不可欠である。
本稿では,入力雑音が任意の確率分布に従う場合に,誤分類の確率を上限とする新しいロバスト性証明法を提案する。
- 参考スコア(独自算出の注目度): 14.191310794366075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods to certify the robustness of neural networks in the presence of input
uncertainty are vital in safety-critical settings. Most certification methods
in the literature are designed for adversarial input uncertainty, but
researchers have recently shown a need for methods that consider random
uncertainty. In this paper, we propose a novel robustness certification method
that upper bounds the probability of misclassification when the input noise
follows an arbitrary probability distribution. This bound is cast as a
chance-constrained optimization problem, which is then reformulated using
input-output samples to replace the optimization constraints. The resulting
optimization reduces to a linear program with an analytical solution.
Furthermore, we develop a sufficient condition on the number of samples needed
to make the misclassification bound hold with overwhelming probability. Our
case studies on MNIST classifiers show that this method is able to certify a
uniform infinity-norm uncertainty region with a radius of nearly 50 times
larger than what the current state-of-the-art method can certify.
- Abstract(参考訳): 入力の不確実性の存在下でのニューラルネットワークの堅牢性を証明する方法は、安全クリティカルな設定において不可欠である。
文献のほとんどの認証方法は、逆入力の不確実性のために設計されているが、研究者は近年、ランダム不確実性を考慮した方法の必要性を示している。
本稿では,入力雑音が任意の確率分布に従う場合に,誤分類の確率を上限とする新しいロバスト性証明法を提案する。
この境界は、確率制約付き最適化問題としてキャストされ、最適化制約を置き換えるために入力出力サンプルを用いて再構成される。
結果として得られる最適化は、解析解を持つ線形プログラムに還元される。
さらに,過大な確率で誤分類バウンドホールドさせるのに必要なサンプル数について十分な条件を定めている。
MNIST分類器のケーススタディでは、この手法が、現在の最先端法よりも50倍近い半径を持つ一様無限ノルム不確かさ領域を証明できることが示されている。
関連論文リスト
- The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
本稿では、入力(または事前)測度が部分的に不完全であるシステムに対する最適(最大および無限)不確実性境界について述べる。
本研究では,不確実性最適化問題に対する学習基盤の枠組みを実証する。
本手法は,工学的実践における性能証明と安全性のためのマップ構築に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-28T14:30:53Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
我々は「ガウス雑音下での精度」を、入力に対する対角的ロバスト性の容易に計算可能なプロキシとして利用する。
実験の結果, 提案手法は, 最先端の訓練手法による信頼性向上を継続的に示すことがわかった。
論文 参考訳(メタデータ) (2022-12-18T03:57:12Z) - Towards Evading the Limits of Randomized Smoothing: A Theoretical
Analysis [74.85187027051879]
決定境界を複数の雑音分布で探索することにより,任意の精度で最適な証明を近似できることを示す。
この結果は、分類器固有の認証に関するさらなる研究を後押しし、ランダム化された平滑化が依然として調査に値することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:48:54Z) - Kernel Robust Hypothesis Testing [20.78285964841612]
本稿では,カーネル方式を用いて不確実性集合をデータ駆動方式で構築する。
目標は、不確実性集合上の最悪のケース分布の下でうまく機能するテストを設計することである。
Neyman-Pearsonの設定では、誤検知の最悪のケース確率を最小限に抑え、誤警報の最悪のケース確率を制約する。
論文 参考訳(メタデータ) (2022-03-23T23:59:03Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
本研究では,高次元入力データとラベルの限られたサンプル数から学習する不確実性が,近似メッセージパッシングアルゴリズムによって得られることを示す。
我々は,信頼度を適切に正則化することで緩和する方法について論じるとともに,損失に対するクロスバリデーションが0/1誤差よりもキャリブレーションが優れていることを示す。
論文 参考訳(メタデータ) (2022-02-07T15:32:07Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
分割雑音を伴う非加法的決定論的平滑化法(dssn)を提案する。
一様加法平滑化とは対照的に、ssn認証は無作為なノイズコンポーネントを独立に必要としない。
これは、規範ベースの敵対的脅威モデルに対して決定論的「ランダム化平滑化」を提供する最初の仕事である。
論文 参考訳(メタデータ) (2021-03-17T21:49:53Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Data-Driven Assessment of Deep Neural Networks with Random Input
Uncertainty [14.191310794366075]
我々は,ネットワーク出力の安全性を同時に証明し,ローカライズ可能なデータ駆動最適化手法を開発した。
深部ReLUネットワークにおける提案手法の有効性とトラクタビリティを実験的に実証した。
論文 参考訳(メタデータ) (2020-10-02T19:13:35Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。