論文の概要: A Theory of Hyperbolic Prototype Learning
- arxiv url: http://arxiv.org/abs/2010.07744v1
- Date: Thu, 15 Oct 2020 13:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 03:16:47.788058
- Title: A Theory of Hyperbolic Prototype Learning
- Title(参考訳): 双曲型原型学習の理論
- Authors: Martin Keller-Ressel
- Abstract要約: 本稿では,双曲型学習(Hyperbolic Prototype Learning)を紹介し,双曲型空間において,クラスラベルを理想点(無限点点)で表現する。
学習は、双曲幾何学のブセマン関数に基づく新しい損失関数である「ペナル化ブセマン損失」を最小化することで達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Hyperbolic Prototype Learning, a type of supervised learning,
where class labels are represented by ideal points (points at infinity) in
hyperbolic space. Learning is achieved by minimizing the 'penalized Busemann
loss', a new loss function based on the Busemann function of hyperbolic
geometry. We discuss several theoretical features of this setup. In particular,
Hyperbolic Prototype Learning becomes equivalent to logistic regression in the
one-dimensional case.
- Abstract(参考訳): 本稿では,ハイパーボリック空間において,クラスラベルを理想点(無限点)で表現する,教師付き学習の一種であるHyperbolic Prototype Learningを紹介する。
学習は双曲幾何学のブセマン関数に基づく新しい損失関数である「ペナルテッド・ブセマン損失」を最小化することで達成される。
この設定のいくつかの理論的特徴について論じる。
特に、双曲型プロトタイプ学習は1次元の場合のロジスティック回帰と等価となる。
関連論文リスト
- Tempered Calculus for ML: Application to Hyperbolic Model Embedding [70.61101116794549]
MLで使用されるほとんどの数学的歪みは、本質的に自然界において積分的である。
本稿では,これらの歪みを改善するための基礎的理論とツールを公表し,機械学習の要件に対処する。
我々は、最近MLで注目を集めた問題、すなわち、ハイパーボリック埋め込みを「チープ」で正確なエンコーディングで適用する方法を示す。
論文 参考訳(メタデータ) (2024-02-06T17:21:06Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
高品質なグラフ埋め込みを学習するための新しいコントラスト学習フレームワークを提案する。
具体的には、階層的なデータ不変情報を効果的にキャプチャするアライメントメトリックを設計する。
双曲空間において、木の性質に関連する葉と高さの均一性に対処する必要があることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:42Z) - HMSN: Hyperbolic Self-Supervised Learning by Clustering with Ideal
Prototypes [7.665392786787577]
プロトタイプに基づくクラスタリング手法の自己教師付き表現学習には,双曲表現空間を用いる。
我々はMasked Siamese Networksを拡張し、双曲空間のPoincar'eボールモデルで操作する。
従来の手法とは異なり、エンコーダネットワークの出力における双曲空間に投影し、双曲投影ヘッドを利用して、下流タスクに使用される表現が双曲的であることを保証する。
論文 参考訳(メタデータ) (2023-05-18T12:38:40Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
FSCIL(Few-shot class-incremental Learning)は、新しいセッションにおいて、新しいクラスごとにいくつかのトレーニングサンプルしかアクセスできないため、難しい問題である。
我々は最近発見された神経崩壊現象にインスパイアされたFSCILのこの不整合ジレンマに対処する。
我々は、FSCILのための神経崩壊誘発フレームワークを提案する。MiniImageNet、CUB-200、CIFAR-100データセットの実験により、提案したフレームワークが最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-06T18:39:40Z) - Hyperbolic Busemann Learning with Ideal Prototypes [14.525985704735055]
本研究では,任意のデータの表現学習のための双曲型ブセマン学習を提案する。
理想のプロトタイプに対して近似性を計算するために、罰則を付したブセマン損失を導入する。
実験により,本手法は,近年の超球面・双曲型プロトタイプよりも高い精度で,分類信頼性の自然な解釈を提供することを示した。
論文 参考訳(メタデータ) (2021-06-28T08:36:59Z) - A Fully Hyperbolic Neural Model for Hierarchical Multi-Class
Classification [7.8176853587105075]
双曲空間は、記号データの階層的表現を学ぶために数学的に魅力的なアプローチを提供する。
本研究は,双曲空間におけるすべての操作を実行する多クラス多ラベル分類のための完全双曲モデルを提案する。
徹底的な分析では、最終予測における各コンポーネントの影響に光を当て、ユークリッド層との統合の容易さを示している。
論文 参考訳(メタデータ) (2020-10-05T14:42:56Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z) - Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory [110.99247009159726]
時間差とQ-ラーニングは、ニューラルネットワークのような表現力のある非線形関数近似器によって強化される深層強化学習において重要な役割を担っている。
特に時間差学習は、関数近似器が特徴表現において線形であるときに収束する。
論文 参考訳(メタデータ) (2020-06-08T17:25:22Z) - Hyperbolic Manifold Regression [33.40757136529844]
本稿では,多くの機械学習応用の中間要素として,双曲空間上で多様体値回帰を行うという問題を考察する。
本稿では,1)ラベル埋め込みによる階層的分類,2)双曲表現の分類的拡張の2つの課題に対する新しい視点を提案する。
実験の結果,双曲幾何学の活用戦略は有望であることが示唆された。
論文 参考訳(メタデータ) (2020-05-28T10:16:30Z) - Differentiating through the Fr\'echet Mean [51.32291896926807]
フレット平均(Fr'echet mean)はユークリッド平均の一般化である。
任意のリーマン多様体に対して Fr'echet 平均を微分する方法を示す。
これにより、Fr'echet平均を双曲型ニューラルネットワークパイプラインに完全に統合する。
論文 参考訳(メタデータ) (2020-02-29T19:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。