論文の概要: Federated Learning in Adversarial Settings
- arxiv url: http://arxiv.org/abs/2010.07808v1
- Date: Thu, 15 Oct 2020 14:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 05:38:14.080575
- Title: Federated Learning in Adversarial Settings
- Title(参考訳): 対人関係におけるフェデレーション学習
- Authors: Raouf Kerkouche, Gergely \'Acs and Claude Castelluccia
- Abstract要約: フェデレートされた学習スキームは、堅牢性、プライバシ、帯域幅効率、モデルの精度の異なるトレードオフを提供します。
この拡張は、厳格なプライバシー要件があっても、プライベートではないがロバストなスキームと同じくらい効率的に機能することを示す。
これは差別化プライバシとロバストネスの基本的なトレードオフの可能性を示している。
- 参考スコア(独自算出の注目度): 0.8701566919381224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning enables entities to collaboratively learn a shared
prediction model while keeping their training data locally. It prevents data
collection and aggregation and, therefore, mitigates the associated privacy
risks. However, it still remains vulnerable to various security attacks where
malicious participants aim at degrading the generated model, inserting
backdoors, or inferring other participants' training data. This paper presents
a new federated learning scheme that provides different trade-offs between
robustness, privacy, bandwidth efficiency, and model accuracy. Our scheme uses
biased quantization of model updates and hence is bandwidth efficient. It is
also robust against state-of-the-art backdoor as well as model degradation
attacks even when a large proportion of the participant nodes are malicious. We
propose a practical differentially private extension of this scheme which
protects the whole dataset of participating entities. We show that this
extension performs as efficiently as the non-private but robust scheme, even
with stringent privacy requirements but are less robust against model
degradation and backdoor attacks. This suggests a possible fundamental
trade-off between Differential Privacy and robustness.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)は、トレーニングデータをローカルに保持しながら、共有予測モデルを共同で学習することを可能にする。
データ収集とアグリゲーションを防ぎ、それ故に関連するプライバシーリスクを軽減します。
しかし、悪意のある参加者が生成したモデルを分解したり、バックドアを挿入したり、他の参加者のトレーニングデータを推測したりするさまざまなセキュリティ攻撃に対して、依然として脆弱である。
本稿では,ロバスト性,プライバシ,帯域幅効率,モデル精度の異なるトレードオフを提供する新しいフェデレーション学習手法を提案する。
提案手法はモデル更新のバイアス付き量子化を用いるため,帯域効率が向上する。
また、大多数のノードが悪意のある場合でも、最先端のバックドアやモデル劣化攻撃に対して堅牢である。
本稿では,参加するエンティティのデータセット全体を保護するための,現実的な差分的拡張を提案する。
この拡張は、厳密なプライバシ要件であっても、非プライベートだが堅牢なスキームと同じくらい効率的に動作するが、モデルの劣化やバックドア攻撃に対する堅牢性は低い。
これは、差分プライバシと堅牢性の間の根本的なトレードオフを示唆する。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - No Vandalism: Privacy-Preserving and Byzantine-Robust Federated Learning [18.1129191782913]
フェデレートされた学習により、複数のクライアントがプライベートデータを共有せずに1つの機械学習モデルを共同でトレーニングし、プライバシ保護を提供する。
従来の連合学習は、毒性攻撃に弱いため、モデルの性能を低下させるだけでなく、悪意のあるバックドアを埋め込むこともできる。
本稿では,悪意ある参加者からの攻撃に対して,有害行為(NoV)のない環境を提供するために,プライバシ保護とビザンチン損なうフェデレーション・ラーニング・スキームを構築することを目的とする。
論文 参考訳(メタデータ) (2024-06-03T07:59:10Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - PPBFL: A Privacy Protected Blockchain-based Federated Learning Model [6.278098707317501]
フェデレート学習の安全性を高めるために,保護型フェデレート学習モデル(PPBFL)を提案する。
本稿では,訓練ノードのインセンティブを目的とした,連邦学習に適した訓練作業証明(PoTW)アルゴリズムを提案する。
また、リングシグネチャ技術を利用した新たなミックストランザクション機構を提案し、ローカルトレーニングクライアントのIDプライバシをよりよく保護する。
論文 参考訳(メタデータ) (2024-01-02T13:13:28Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Certified Robustness in Federated Learning [54.03574895808258]
我々は,フェデレーショントレーニングとパーソナライゼーション,および認定ロバストネスの相互作用について検討した。
単純なフェデレーション平均化技術は, より正確であるだけでなく, より精度の高いロバストモデルの構築にも有効であることがわかった。
論文 参考訳(メタデータ) (2022-06-06T12:10:53Z) - Secure and Privacy-Preserving Federated Learning via Co-Utility [7.428782604099875]
私たちは、参加する仲間にプライバシを提供し、ビザンチンや毒殺攻撃に対するセキュリティを提供する、連合学習フレームワークを構築しています。
更新アグリゲーションによるプライバシ保護とは異なり、我々のアプローチはモデル更新の価値を保ち、従って通常のフェデレーション学習の精度を保っている。
論文 参考訳(メタデータ) (2021-08-04T08:58:24Z) - Constrained Differentially Private Federated Learning for Low-bandwidth
Devices [1.1470070927586016]
本稿では,新しいプライバシー保護型連合学習方式を提案する。
これは、差分プライバシーに基づく理論上のプライバシー保証を提供する。
上流と下流の帯域幅を標準のフェデレート学習と比較して最大99.9%削減する。
論文 参考訳(メタデータ) (2021-02-27T22:25:06Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Compression Boosts Differentially Private Federated Learning [0.7742297876120562]
フェデレートされた学習により、分散エンティティは、自身のデータを共有することなく、共通のモデルを協調的にトレーニングできる。
悪意のあるエンティティが、捕獲された勾配から参加者のトレーニングデータに関するプライベート情報を学ぶことができるような、さまざまな推論や再構築攻撃に対して脆弱なままである。
本稿では,2つのデータセットを用いて,従来の非私的フェデレート学習方式と比較して,通信コストを最大95%削減できることを示す。
論文 参考訳(メタデータ) (2020-11-10T13:11:03Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。