論文の概要: Secure and Privacy-Preserving Federated Learning via Co-Utility
- arxiv url: http://arxiv.org/abs/2108.01913v1
- Date: Wed, 4 Aug 2021 08:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 13:07:35.806450
- Title: Secure and Privacy-Preserving Federated Learning via Co-Utility
- Title(参考訳): 安全とプライバシ保護による共用によるフェデレーション学習
- Authors: Josep Domingo-Ferrer, Alberto Blanco-Justicia, Jes\'us Manj\'on and
David S\'anchez
- Abstract要約: 私たちは、参加する仲間にプライバシを提供し、ビザンチンや毒殺攻撃に対するセキュリティを提供する、連合学習フレームワークを構築しています。
更新アグリゲーションによるプライバシ保護とは異なり、我々のアプローチはモデル更新の価値を保ち、従って通常のフェデレーション学習の精度を保っている。
- 参考スコア(独自算出の注目度): 7.428782604099875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decentralized nature of federated learning, that often leverages the
power of edge devices, makes it vulnerable to attacks against privacy and
security. The privacy risk for a peer is that the model update she computes on
her private data may, when sent to the model manager, leak information on those
private data. Even more obvious are security attacks, whereby one or several
malicious peers return wrong model updates in order to disrupt the learning
process and lead to a wrong model being learned. In this paper we build a
federated learning framework that offers privacy to the participating peers as
well as security against Byzantine and poisoning attacks. Our framework
consists of several protocols that provide strong privacy to the participating
peers via unlinkable anonymity and that are rationally sustainable based on the
co-utility property. In other words, no rational party is interested in
deviating from the proposed protocols. We leverage the notion of co-utility to
build a decentralized co-utile reputation management system that provides
incentives for parties to adhere to the protocols. Unlike privacy protection
via differential privacy, our approach preserves the values of model updates
and hence the accuracy of plain federated learning; unlike privacy protection
via update aggregation, our approach preserves the ability to detect bad model
updates while substantially reducing the computational overhead compared to
methods based on homomorphic encryption.
- Abstract(参考訳): エッジデバイスのパワーをしばしば活用するフェデレーション学習の分散した性質は、プライバシとセキュリティに対する攻撃に対して脆弱である。
ピアにとってのプライバシリスクは、彼女がプライベートデータで計算したモデル更新が、モデルマネージャに送信されると、それらのプライベートデータに関する情報が漏洩する可能性があることだ。
さらに明らかなのはセキュリティ攻撃で、1人または複数の悪意のある仲間が学習プロセスを混乱させ、誤ったモデルを学ぶために間違ったモデル更新を返す。
本稿では,ビザンチン攻撃や毒殺攻撃に対するセキュリティだけでなく,参加者にプライバシを提供するフェデレート学習フレームワークを構築する。
私たちのフレームワークは、リンク不能な匿名性を通じて参加者に強力なプライバシを提供するプロトコルと、共用性プロパティに基づいて合理的に持続可能なプロトコルで構成されています。
言い換えれば、提案されたプロトコルから逸脱することに関心を持つ合理的な当事者はいない。
我々は,共同利用の概念を活用し,プロトコルを遵守するためのインセンティブを提供する分散型共同利用評価管理システムを構築する。
差分プライバシによるプライバシ保護とは違って,我々のアプローチでは,モデル更新の価値を保ち,従ってプレーンなフェデレーション学習の精度を保ち,更新集約によるプライバシ保護とは異なり,同型暗号化に基づく手法に比べて計算オーバーヘッドを大幅に低減しつつ,悪いモデル更新を検出する能力を維持している。
関連論文リスト
- PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - No Vandalism: Privacy-Preserving and Byzantine-Robust Federated Learning [18.1129191782913]
フェデレートされた学習により、複数のクライアントがプライベートデータを共有せずに1つの機械学習モデルを共同でトレーニングし、プライバシ保護を提供する。
従来の連合学習は、毒性攻撃に弱いため、モデルの性能を低下させるだけでなく、悪意のあるバックドアを埋め込むこともできる。
本稿では,悪意ある参加者からの攻撃に対して,有害行為(NoV)のない環境を提供するために,プライバシ保護とビザンチン損なうフェデレーション・ラーニング・スキームを構築することを目的とする。
論文 参考訳(メタデータ) (2024-06-03T07:59:10Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
フェデレーション学習は、プライベートデータの送信を許可せず、中間更新のみを許可するため、プライバシー上の懸念によって動機付けられている。
我々は、各ステップの更新を安全に計算できる、完全に分散化されたプライバシ保存ソリューションを提案する。
数値検証により,提案手法は,精度とプライバシの両面において,既存手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-16T09:58:03Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Privacy-preserving Decentralized Aggregation for Federated Learning [3.9323226496740733]
フェデレーション学習は、複数のリージョンにまたがる分散データを学習するための有望なフレームワークである。
我々は,連合学習のためのプライバシ保存型分散集約プロトコルを開発した。
9 と 15 の分散サイトを持つベンチマークデータセットを用いて,画像分類と次単語予測のアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2020-12-13T23:45:42Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z) - Federated Learning in Adversarial Settings [0.8701566919381224]
フェデレートされた学習スキームは、堅牢性、プライバシ、帯域幅効率、モデルの精度の異なるトレードオフを提供します。
この拡張は、厳格なプライバシー要件があっても、プライベートではないがロバストなスキームと同じくらい効率的に機能することを示す。
これは差別化プライバシとロバストネスの基本的なトレードオフの可能性を示している。
論文 参考訳(メタデータ) (2020-10-15T14:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。