Exploring Flip Flop memories and beyond: training recurrent neural
networks with key insights
- URL: http://arxiv.org/abs/2010.07858v4
- Date: Sat, 29 Jul 2023 10:39:03 GMT
- Title: Exploring Flip Flop memories and beyond: training recurrent neural
networks with key insights
- Authors: Cecilia Jarne
- Abstract summary: We study the implementation of a temporal processing task, specifically a 3-bit Flip Flop memory.
The obtained networks are meticulously analyzed to elucidate dynamics, aided by an array of visualization and analysis tools.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training neural networks to perform different tasks is relevant across
various disciplines. In particular, Recurrent Neural Networks (RNNs) are of
great interest in Computational Neuroscience. Open-source frameworks dedicated
to Machine Learning, such as Tensorflow and Keras have produced significant
changes in the development of technologies that we currently use. This work
aims to make a significant contribution by comprehensively investigating and
describing the implementation of a temporal processing task, specifically a
3-bit Flip Flop memory. We delve into the entire modelling process,
encompassing equations, task parametrization, and software development. The
obtained networks are meticulously analyzed to elucidate dynamics, aided by an
array of visualization and analysis tools. Moreover, the provided code is
versatile enough to facilitate the modelling of diverse tasks and systems.
Furthermore, we present how memory states can be efficiently stored in the
vertices of a cube in the dimensionally reduced space, supplementing previous
results with a distinct approach.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
arXiv Detail & Related papers (2023-08-01T22:12:30Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations.
Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time.
Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions.
arXiv Detail & Related papers (2022-03-02T19:09:52Z) - Multi-Task Neural Processes [105.22406384964144]
We develop multi-task neural processes, a new variant of neural processes for multi-task learning.
In particular, we propose to explore transferable knowledge from related tasks in the function space to provide inductive bias for improving each individual task.
Results demonstrate the effectiveness of multi-task neural processes in transferring useful knowledge among tasks for multi-task learning.
arXiv Detail & Related papers (2021-11-10T17:27:46Z) - How to Train Your Neural Network: A Comparative Evaluation [1.3654846342364304]
We discuss and compare current state-of-the-art frameworks for large scale distributed deep learning.
We present empirical results comparing their performance on large image and language training tasks.
Based on our results, we discuss algorithmic and implementation portions of each framework which hinder performance.
arXiv Detail & Related papers (2021-11-09T04:24:42Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.