論文の概要: Inducing Causal Structure for Abstractive Text Summarization
- arxiv url: http://arxiv.org/abs/2308.12888v1
- Date: Thu, 24 Aug 2023 16:06:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 13:27:37.688636
- Title: Inducing Causal Structure for Abstractive Text Summarization
- Title(参考訳): 抽象的テキスト要約のための因果構造誘導
- Authors: Lu Chen, Ruqing Zhang, Wei Huang, Wei Chen, Jiafeng Guo, Xueqi Cheng
- Abstract要約: 要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
- 参考スコア(独自算出の注目度): 76.1000380429553
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The mainstream of data-driven abstractive summarization models tends to
explore the correlations rather than the causal relationships. Among such
correlations, there can be spurious ones which suffer from the language prior
learned from the training corpus and therefore undermine the overall
effectiveness of the learned model. To tackle this issue, we introduce a
Structural Causal Model (SCM) to induce the underlying causal structure of the
summarization data. We assume several latent causal factors and non-causal
factors, representing the content and style of the document and summary.
Theoretically, we prove that the latent factors in our SCM can be identified by
fitting the observed training data under certain conditions. On the basis of
this, we propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq)
to learn the causal representations that can mimic the causal factors, guiding
us to pursue causal information for summary generation. The key idea is to
reformulate the Variational Auto-encoder (VAE) to fit the joint distribution of
the document and summary variables from the training corpus. Experimental
results on two widely used text summarization datasets demonstrate the
advantages of our approach.
- Abstract(参考訳): データ駆動抽象要約モデルの主流は、因果関係よりも相関を探求する傾向がある。
このような相関関係の中で、トレーニングコーパスから事前に学習した言語に苦しむ突発的な言語が存在するため、学習モデルの全体的な効果を損なうことができる。
この問題に対処するために,要約データの下位因果構造を誘導する構造因果モデル(scm)を提案する。
いくつかの因果要因と非因果因子を仮定し、文書の内容とスタイルと要約を表現する。
理論的には,SCMの潜伏要因は,特定の条件下で観測したトレーニングデータを適合させることで同定できる。
そこで本研究では,因果要因を模倣できる因果表現を学習するために,因果性に触発されたシーケンシャル・ツー・シークエンスモデル(ci-seq2seq)を提案する。
鍵となる考え方は、変分オートエンコーダ(VAE)を再構成して、トレーニングコーパスからの文書と要約変数の共分散に適合させることである。
広く使われている2つのテキスト要約データセットの実験結果は,本手法の利点を示している。
関連論文リスト
- Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
因果表現学習(Causal representation learning)は、データセットの変動の要因は、実際には因果関係にあると主張している。
本稿では,遅延付加雑音モデルを用いたデータ生成過程を考慮した,教師なし表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-11T18:12:05Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
本稿では,観測データから因果表現を学習するために,仮説因果グラフに基づいて相互情報量で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反ファクト的損失を伴う。
論文 参考訳(メタデータ) (2022-02-17T00:38:35Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Uncovering Main Causalities for Long-tailed Information Extraction [14.39860866665021]
データセットの選択バイアスによって引き起こされる長い尾の分布は、誤った相関をもたらす可能性がある。
これは、データの背後にある主な因果関係を明らかにすることを目的とした、新しいフレームワークである。
論文 参考訳(メタデータ) (2021-09-11T08:08:24Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。