MAP Propagation Algorithm: Faster Learning with a Team of Reinforcement
Learning Agents
- URL: http://arxiv.org/abs/2010.07893v2
- Date: Tue, 5 Oct 2021 16:44:08 GMT
- Title: MAP Propagation Algorithm: Faster Learning with a Team of Reinforcement
Learning Agents
- Authors: Stephen Chung
- Abstract summary: An alternative way of training an artificial neural network is through treating each unit in the network as a reinforcement learning agent.
We propose a novel algorithm called MAP propagation to reduce this variance significantly.
Our work thus allows for the broader application of the teams of agents in deep reinforcement learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nearly all state-of-the-art deep learning algorithms rely on error
backpropagation, which is generally regarded as biologically implausible. An
alternative way of training an artificial neural network is through treating
each unit in the network as a reinforcement learning agent, and thus the
network is considered as a team of agents. As such, all units can be trained by
REINFORCE, a local learning rule modulated by a global signal that is more
consistent with biologically observed forms of synaptic plasticity. Although
this learning rule follows the gradient of return in expectation, it suffers
from high variance and thus the low speed of learning, rendering it impractical
to train deep networks. We therefore propose a novel algorithm called MAP
propagation to reduce this variance significantly while retaining the local
property of the learning rule. Experiments demonstrated that MAP propagation
could solve common reinforcement learning tasks at a similar speed to
backpropagation when applied to an actor-critic network. Our work thus allows
for the broader application of the teams of agents in deep reinforcement
learning.
Related papers
- Emerging NeoHebbian Dynamics in Forward-Forward Learning: Implications for Neuromorphic Computing [7.345136916791223]
Forward-Forward Algorithm (FFA) employs local learning rules for each layer.
We show that when employing a squared Euclidean norm as a goodness function driving the local learning, the resulting FFA is equivalent to a neo-Hebbian Learning Rule.
arXiv Detail & Related papers (2024-06-24T09:33:56Z) - Structural Credit Assignment with Coordinated Exploration [0.0]
Methods aimed at improving structural credit assignment can generally be classified into two categories.
We propose the use of Boltzmann machines or a recurrent network for coordinated exploration.
Experimental results demonstrate that coordinated exploration significantly exceeds independent exploration in training speed.
arXiv Detail & Related papers (2023-07-25T04:55:45Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
arXiv Detail & Related papers (2022-10-10T10:05:00Z) - Biologically Plausible Training of Deep Neural Networks Using a Top-down
Credit Assignment Network [32.575847142016585]
Top-Down Credit Assignment Network (TDCA-network) is designed to train a bottom-up network using a Top-Down Credit Assignment Network (TDCA-network)
TDCA-network serves as a substitute for the conventional loss function and the back-propagation algorithm, widely used in neural network training.
The results indicate TDCA-network holds promising potential to train neural networks across diverse datasets.
arXiv Detail & Related papers (2022-08-01T07:14:37Z) - Stacked unsupervised learning with a network architecture found by
supervised meta-learning [4.209801809583906]
Stacked unsupervised learning seems more biologically plausible than backpropagation.
But SUL has fallen far short of backpropagation in practical applications.
We show an SUL algorithm that can perform completely unsupervised clustering of MNIST digits.
arXiv Detail & Related papers (2022-06-06T16:17:20Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsity can reduce the memory footprint of regular networks to fit mobile devices.
We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice.
arXiv Detail & Related papers (2021-01-31T22:48:50Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Faster Biological Gradient Descent Learning [0.0]
Back-propagation is a popular machine learning algorithm that uses gradient descent in training neural networks for supervised learning.
We have come up with a simple and local gradient descent optimization algorithm that can reduce training time.
Our algorithm is found to speed up learning, particularly for small networks.
arXiv Detail & Related papers (2020-09-27T05:26:56Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.