論文の概要: Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense
Spatiotemporal Grounding
- arxiv url: http://arxiv.org/abs/2010.07954v1
- Date: Thu, 15 Oct 2020 18:01:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 02:42:01.821184
- Title: Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense
Spatiotemporal Grounding
- Title(参考訳): Room-Across-Room:Dense Spatiotemporal Groundingを用いた多言語視覚・言語ナビゲーション
- Authors: Alexander Ku and Peter Anderson and Roma Patel and Eugene Ie and Jason
Baldridge
- Abstract要約: 新しいビジョン・アンド・ランゲージ・ナビゲーション(VLN)データセットであるRoom-Across-Room(RxR)を紹介する。
RxRは多言語(英語、ヒンディー語、テルグ語)で、他のVLNデータセットよりも大きい(パスと命令がより多い)。
これはVLNにおける言語の役割を強調し、パスにおける既知のバイアスに対処し、可視化されたエンティティへのより多くの参照を引き出す。
- 参考スコア(独自算出の注目度): 75.03682706791389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Room-Across-Room (RxR), a new Vision-and-Language Navigation
(VLN) dataset. RxR is multilingual (English, Hindi, and Telugu) and larger
(more paths and instructions) than other VLN datasets. It emphasizes the role
of language in VLN by addressing known biases in paths and eliciting more
references to visible entities. Furthermore, each word in an instruction is
time-aligned to the virtual poses of instruction creators and validators. We
establish baseline scores for monolingual and multilingual settings and
multitask learning when including Room-to-Room annotations. We also provide
results for a model that learns from synchronized pose traces by focusing only
on portions of the panorama attended to in human demonstrations. The size,
scope and detail of RxR dramatically expands the frontier for research on
embodied language agents in simulated, photo-realistic environments.
- Abstract(参考訳): 新しいビジョン・アンド・ランゲージ・ナビゲーション(VLN)データセットであるRoom-Across-Room(RxR)を紹介する。
RxRは多言語(英語、ヒンディー語、テルグ語)で、他のVLNデータセットよりも大きい(パスと命令がより多い)。
これはVLNにおける言語の役割を強調し、パスにおける既知のバイアスに対処し、可視化されたエンティティへのより多くの参照を引き出す。
さらに、命令中の各単語は、命令作成者とバリデーターの仮想ポーズにタイムアライメントされる。
部屋間アノテーションを含む場合、単言語および多言語設定とマルチタスク学習のためのベースラインスコアを確立する。
また,人間のデモに参加するパノラマの部分のみに着目して,同期ポーズトレースから学習するモデルの結果も提供する。
RxRのサイズ、範囲、詳細は、シミュレーションされたフォトリアリスティック環境におけるエンボディ言語エージェントの研究のフロンティアを劇的に拡大する。
関連論文リスト
- Thank You, Stingray: Multilingual Large Language Models Can Not (Yet) Disambiguate Cross-Lingual Word Sense [30.62699081329474]
本稿では,言語間感覚曖昧化のための新しいベンチマーク,StingrayBenchを紹介する。
インドネシア語とマレー語、インドネシア語とタガログ語、中国語と日本語、英語とドイツ語の4つの言語ペアで偽の友人を集めます。
各種モデルの解析において,高リソース言語に偏りが生じる傾向が見られた。
論文 参考訳(メタデータ) (2024-10-28T22:09:43Z) - LangNav: Language as a Perceptual Representation for Navigation [63.90602960822604]
視覚・言語ナビゲーション(VLN)における知覚表現としての言語の利用について検討する。
提案手法では,画像キャプションや物体検出に市販の視覚システムを用いて,エージェントのエゴセントリックなパノラマビューを各ステップで自然言語記述に変換する。
論文 参考訳(メタデータ) (2023-10-11T20:52:30Z) - CLEAR: Improving Vision-Language Navigation with Cross-Lingual,
Environment-Agnostic Representations [98.30038910061894]
VLN(Vision-and-Language Navigation)タスクでは、エージェントが言語命令に基づいて環境をナビゲートする必要がある。
CLEAR: 言語横断表現と環境非依存表現を提案する。
我々の言語と視覚表現は、Room-to-Room and Cooperative Vision-and-Dialogue Navigationタスクにうまく転送できる。
論文 参考訳(メタデータ) (2022-07-05T17:38:59Z) - The Geometry of Multilingual Language Model Representations [25.880639246639323]
我々は,言語知覚情報を各言語で符号化しながら,多言語モデルが共有多言語表現空間をどのように維持するかを評価する。
部分空間は、中層全体で比較的安定な言語感受性軸に沿って異なり、これらの軸はトークン語彙などの情報を符号化する。
言語感受性および言語ニュートラル軸に投影された表現を可視化し,言語族と音声クラスタを識別し,スパイラル,トーラス,トークン位置情報を表す曲線を可視化する。
論文 参考訳(メタデータ) (2022-05-22T23:58:24Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - Know What and Know Where: An Object-and-Room Informed Sequential BERT
for Indoor Vision-Language Navigation [120.90387630691816]
VLN(Vision-and-Language Navigation)は、自然言語命令と写真リアリスティックパノラマのセットに基づいて、エージェントが遠隔地へ移動する必要がある。
既存の手法の多くは、各パノラマの命令と離散ビューで単語をエンコーディングの最小単位とする。
視覚知覚と言語指示を同一のきめ細かいレベルで符号化するオブジェクトインフォームド・シーケンシャルBERTを提案する。
論文 参考訳(メタデータ) (2021-04-09T02:44:39Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。