論文の概要: The Geometry of Multilingual Language Model Representations
- arxiv url: http://arxiv.org/abs/2205.10964v1
- Date: Sun, 22 May 2022 23:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 17:08:58.010914
- Title: The Geometry of Multilingual Language Model Representations
- Title(参考訳): 多言語言語モデル表現の幾何学
- Authors: Tyler A. Chang, Zhuowen Tu, Benjamin K. Bergen
- Abstract要約: 我々は,言語知覚情報を各言語で符号化しながら,多言語モデルが共有多言語表現空間をどのように維持するかを評価する。
部分空間は、中層全体で比較的安定な言語感受性軸に沿って異なり、これらの軸はトークン語彙などの情報を符号化する。
言語感受性および言語ニュートラル軸に投影された表現を可視化し,言語族と音声クラスタを識別し,スパイラル,トーラス,トークン位置情報を表す曲線を可視化する。
- 参考スコア(独自算出の注目度): 25.880639246639323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We assess how multilingual language models maintain a shared multilingual
representation space while still encoding language-sensitive information in
each language. Using XLM-R as a case study, we show that languages occupy
similar linear subspaces after mean-centering, evaluated based on causal
effects on language modeling performance and direct comparisons between
subspaces for 88 languages. The subspace means differ along language-sensitive
axes that are relatively stable throughout middle layers, and these axes encode
information such as token vocabularies. Shifting representations by language
means is sufficient to induce token predictions in different languages.
However, we also identify stable language-neutral axes that encode information
such as token positions and part-of-speech. We visualize representations
projected onto language-sensitive and language-neutral axes, identifying
language family and part-of-speech clusters, along with spirals, toruses, and
curves representing token position information. These results demonstrate that
multilingual language models encode information along orthogonal
language-sensitive and language-neutral axes, allowing the models to extract a
variety of features for downstream tasks and cross-lingual transfer learning.
- Abstract(参考訳): 我々は,言語知覚情報を各言語で符号化しながら,多言語モデルが共有多言語表現空間を維持する方法を評価する。
ケーススタディとしてXLM-Rを用いて、言語が平均中心化後の線形部分空間を占有していることを示し、言語モデリング性能と88言語における部分空間間の直接比較に基づいて評価した。
部分空間は中層全体で比較的安定な言語感受性軸に沿って異なり、これらの軸はトークン語彙などの情報を符号化する。
言語による表現のシフトは、異なる言語でトークン予測を誘導するのに十分である。
しかし,トークンの位置や音声の一部といった情報を符号化する安定言語ニュートラル軸も同定する。
言語感受性および言語ニュートラル軸に投影された表現を可視化し,言語族と音声クラスタを識別し,スパイラル,トーラス,トークン位置情報を表す曲線を可視化する。
これらの結果から,多言語言語モデルは直交言語感性および言語ニュートラル軸に沿った情報を符号化し,下流タスクや言語間移動学習のための様々な特徴を抽出できることを示した。
関連論文リスト
- The Role of Language Imbalance in Cross-lingual Generalisation: Insights from Cloned Language Experiments [57.273662221547056]
本研究では,言語間一般化の非直感的な新規ドライバである言語不均衡について検討する。
学習中に支配的な言語が存在することが、あまり頻度の低い言語の性能を高めることを観察する。
分析を実言語に拡張するにつれ、頻繁な言語は依然として恩恵を受けていますが、言語不均衡が言語間の一般化を引き起こすかどうかは決定的ではありません。
論文 参考訳(メタデータ) (2024-04-11T17:58:05Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
多言語モデルにおける言語表現について検討する。
我々は、コミュニティ中心のモデルが、低リソース言語で同じ家系の言語を区別する上で、より良い性能を発揮することを実験から観察した。
論文 参考訳(メタデータ) (2023-10-20T02:26:34Z) - Informative Language Representation Learning for Massively Multilingual
Neural Machine Translation [47.19129812325682]
多言語ニューラルマシン翻訳モデルでは、通常、人工言語トークンを使用して、所望のターゲット言語への翻訳をガイドする。
近年の研究では、先行する言語トークンは、多言語ニューラルマシン翻訳モデルから正しい翻訳方向へのナビゲートに失敗することがある。
本稿では,言語埋め込み型エンボディメントと言語認識型マルチヘッドアテンションという2つの手法を提案する。
論文 参考訳(メタデータ) (2022-09-04T04:27:17Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Examining Cross-lingual Contextual Embeddings with Orthogonal Structural
Probes [0.2538209532048867]
オルソゴン構造プローブ(Limisiewicz and Marevcek, 2021)では、特定の言語的特徴についてこの疑問に答えることができる。
InmBERTの文脈表現を符号化した構文(UD)と語彙(WordNet)構造情報を9つの多言語で評価した。
ゼロショットと少数ショットのクロスランガル構文解析にこの結果を適用した。
論文 参考訳(メタデータ) (2021-09-10T15:03:11Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual
Lexical Semantic Similarity [67.36239720463657]
Multi-SimLexは、12の異なる言語のデータセットをカバーする大規模な語彙リソースと評価ベンチマークである。
各言語データセットは、意味的類似性の語彙的関係に注釈付けされ、1,888のセマンティック・アライメント・コンセプト・ペアを含む。
言語間の概念の整合性のため、66の言語間セマンティック類似性データセットを提供する。
論文 参考訳(メタデータ) (2020-03-10T17:17:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。