論文の概要: Human Segmentation with Dynamic LiDAR Data
- arxiv url: http://arxiv.org/abs/2010.08092v1
- Date: Fri, 16 Oct 2020 01:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 21:13:22.194645
- Title: Human Segmentation with Dynamic LiDAR Data
- Title(参考訳): 動的LiDARデータによる人間のセグメンテーション
- Authors: Tao Zhong, Wonjik Kim, Masayuki Tanaka and Masatoshi Okutomi
- Abstract要約: 圧縮LiDARスキャンは、単一のフレームよりも豊富な情報を含む動的3Dシーケンスを構成する。
この研究は、動的点雲を用いた人間のセグメンテーションのためのニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 15.98581614407219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consecutive LiDAR scans compose dynamic 3D sequences, which contain more
abundant information than a single frame. Similar to the development history of
image and video perception, dynamic 3D sequence perception starts to come into
sight after inspiring research on static 3D data perception. This work proposes
a spatio-temporal neural network for human segmentation with the dynamic LiDAR
point clouds. It takes a sequence of depth images as input. It has a two-branch
structure, i.e., the spatial segmentation branch and the temporal velocity
estimation branch. The velocity estimation branch is designed to capture motion
cues from the input sequence and then propagates them to the other branch. So
that the segmentation branch segments humans according to both spatial and
temporal features. These two branches are jointly learned on a generated
dynamic point cloud dataset for human recognition. Our works fill in the blank
of dynamic point cloud perception with the spherical representation of point
cloud and achieves high accuracy. The experiments indicate that the
introduction of temporal feature benefits the segmentation of dynamic point
cloud.
- Abstract(参考訳): 圧縮LiDARスキャンは、単一のフレームよりも豊富な情報を含む動的3Dシーケンスを構成する。
画像と映像の知覚の発達史と同様に、静的な3次元データ知覚の研究を刺激した後、動的3次元シーケンス認識が見え始める。
この研究は、動的LiDAR点雲を用いた人間のセグメンテーションのための時空間ニューラルネットワークを提案する。
深度画像のシーケンスを入力として取得する。
二次元分岐構造、すなわち空間分割枝と時間速度推定枝を有する。
速度推定枝は入力シーケンスから動きキューを捕捉し、他の分岐に伝播するように設計されている。
セグメンテーションブランチは、空間的特徴と時間的特徴の両方に応じて人間をセグメンテーションする。
これら2つのブランチは、人間の認識のために生成された動的ポイントクラウドデータセットで共同で学習される。
私たちの作品は、動的点雲知覚の空白を点雲の球面表現で満たし、高い精度を達成する。
実験の結果,時間的特徴の導入は動的点雲のセグメンテーションに有効であることが示唆された。
関連論文リスト
- Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graphはオープンな3Dシーン理解のための新しいシーン表現である。
セマンティクスを記憶し、その形状に応じてオブジェクトの占有度を調節するアダプティブ・オクツリー構造を開発する。
論文 参考訳(メタデータ) (2024-11-25T10:14:10Z) - SPiKE: 3D Human Pose from Point Cloud Sequences [1.8024397171920885]
3D Human Pose Estimation (HPE) は、RGB画像や深度マップ、点雲などの2次元または3次元表現から、人間の身体のキーポイントを3次元空間内に配置するタスクである。
本稿では,点雲列を用いた3次元HPEの新しい手法であるSPiKEを提案する。
3D HPEのITOPベンチマークの実験では、SPiKEは89.19%のmAPに達し、推論時間を大幅に短縮して最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-09-03T13:22:01Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3Dポイントクラウドシーケンスは、現実世界の環境における最も一般的で実用的な表現の1つとして機能する。
textitStructured Point Cloud Videos (SPCV) と呼ばれる新しい汎用表現を提案する。
SPCVは点雲列を空間的滑らかさと時間的一貫性を持つ2Dビデオとして再編成し、画素値は点の3D座標に対応する。
論文 参考訳(メタデータ) (2024-03-02T08:18:57Z) - U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation [19.706172244951116]
本稿では,U3DS$3$について,総合的な3Dシーンに対して,完全に教師なしのポイントクラウドセグメンテーションに向けたステップとして提示する。
提案手法の最初のステップは,各シーンの幾何学的特徴に基づいてスーパーポイントを生成することである。
次に、空間クラスタリングに基づく手法を用いて学習プロセスを行い、次いで、クラスタセントロイドに応じて生成された擬似ラベルを用いて反復的なトレーニングを行う。
論文 参考訳(メタデータ) (2023-11-10T12:05:35Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
本稿では,識別可能なニューラルエンコーダによる点雲表現の自己教師型学習手法を提案する。
学習したポイントクラウドは、3D検出やセグメンテーションといったハイレベルなレンダリングタスクだけでなく、3D再構成や画像レンダリングといった低レベルなタスクを含む、さまざまなダウンストリームタスクに簡単に統合できる。
論文 参考訳(メタデータ) (2022-12-31T08:58:39Z) - PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences [51.53563462897779]
本稿では,ポイントクラウドシーケンスの情報表現を実現するために,PST畳み込みを提案する。
PSTは3次元空間における局所的構造点を捉えるために空間畳み込みを用い、時間次元に沿った空間領域のダイナミクスをモデル化するために時間畳み込みを用いる。
提案したPST畳み込みを深層ネットワーク,すなわちPSTNetに組み込んで,階層的に点群列の特徴を抽出する。
論文 参考訳(メタデータ) (2022-05-27T02:14:43Z) - Anchor-Based Spatial-Temporal Attention Convolutional Networks for
Dynamic 3D Point Cloud Sequences [20.697745449159097]
動的3次元点雲列を処理するために,アンカー型時空間注意畳み込み演算(astaconv)を提案する。
提案する畳み込み操作は、各点の周囲に複数の仮想アンカーを設定することにより、各点の周囲にレギュラーレセプティブフィールドを構築する。
提案手法は,局所領域内の構造化情報をよりよく活用し,動的3次元点雲列から空間-時間埋め込み特徴を学習する。
論文 参考訳(メタデータ) (2020-12-20T07:35:37Z) - Self-Supervised Learning of Part Mobility from Point Cloud Sequence [9.495859862104515]
動的対象を表す点列から,部品のセグメント化と動作特性の予測を行う自己教師型手法を提案する。
シーケンスの連続するフレーム間の相関を利用してトラジェクトリを生成する。
動作部分分割, 動き軸予測, 動き範囲推定など, 様々なタスクにおける提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-20T11:29:46Z) - 3DMotion-Net: Learning Continuous Flow Function for 3D Motion Prediction [12.323767993152968]
本研究では,従来の2つの連続したフレームから3次元物体の3次元運動を予測する問題に対処する。
本稿では,ディープニューラルネットワークのパワーを活用して3次元点雲の連続流れ関数を学習する自己教師型アプローチを提案する。
D-FAUST,SCAPE,TOSCAベンチマークデータセットについて広範な実験を行い,本手法が時間的に一貫性のない入力を処理可能であることを示す。
論文 参考訳(メタデータ) (2020-06-24T17:39:19Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
我々はPseudo-LiDAR点雲ネットワークを提案し、時間的および空間的に高品質な点雲列を生成する。
点雲間のシーンフローを活用することにより,提案ネットワークは3次元空間運動関係のより正確な表現を学習することができる。
論文 参考訳(メタデータ) (2020-06-20T03:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。